Error! Use the Home tab to apply Überschrift 1 to the text that you want to appear here.

Introduction

[bookmark: _Toc427636447]
	Application note

	CM CANopen

	Description of the transparent CAN demo

	

HMS Technology Center Ravensburg GmbH
Helmut-Vetter-Straße 2
88213 Ravensburg
Germany

Tel.: +49 751 56146-0
Fax: +49 751 56146-29
Internet: www.hms-networks.de
E-Mail: info-ravensburg@hms-networks.de

	

	Support
In case of unsolvable problems with this product or other HMS products please contact HMS in written form:

Fax: +49 751 56146-29
E-Mail: support@ixxat.de

Further international support contacts can be found on our webpage www.hms-networks.de

	

	Copyright
Duplication (copying, printing, microfilm or other forms) and the electronic distribution of this document is only allowed with explicit permission of HMS Technology Center Ravensburg GmbH. HMS Technology Center Ravensburg GmbH reserves the right to change technical data without prior announcement. The general business conditions and the regulations of the license agreement do apply. All rights are reserved.

	

	Registered trademarks
All trademarks mentioned in this document and where applicable third party registered are absolutely subject to the conditions of each valid label right and the rights of particular registered proprietor. The absence of identification of a trademark does not automatically mean that it is not protected by trademark law.

	

	Document number: X.XX.XXXX.XXXXX
Version: 1.0

[bookmark: _GoBack]1	Introduction	5
1.1	Restrictions	6
1.2	Synonyms / Abbreviations	7
1.3	Related Documents	8
2	Overview of the transparent CAN demo	9
2.1	Hardware identifier of the CM module	10
3	Processing of a CAN_CTRL command	12
3.1	Adaption of the Demo	15
3.1.1	Set Acceptance Filter FCN: 1	15
3.1.2	BUFFER LIMIT REACHED FCN: 2	17
3.1.3	Clear RX Buffer FCN: 3	17
3.1.4	Reset CAN Controller FCN: 5	17
4	Upload / processing of received CAN frames	18
4.1	General information	18
4.1.1	Example	19
4.2	Api_UploadCANFrames [FC3]	21
4.2.1	Processing of the uploaded CAN frames	23
4.3	Processing of the data of an uploaded CAN frame	24
4.3.1	Description of the CAN-ID specific callback functions of the demo	24
4.4	Adaption of the Demo	25
5	Download of CAN frames	26
5.1	General information	26
5.1.1	Example	27
5.2	Description of the demo	29
5.2.1	Download request	29
5.2.1.1	Example	30
5.2.2	Callback functions	32
5.2.2.1	Implementation of a CAN identifier specific callback function	34
5.2.2.2	Description of the demo specific callback functions	35
5.3	Api_DownloadCANFrames [FC4]	37
5.4	Adaption of the Demo	40
6	Processing of a “Get Diagnostic Information” command	41
7	CAN Status, Api_CANStatus [FC6]	43
8	Description of the transparent CAN FBs	44
8.1	CAN_CTRL FB	44
8.1.1	Parameters of CAN_CTRL FB	45
8.1.2	Function Codes	49
8.1.2.1	FCN = 1	49
8.1.2.2	FCN = 2	50
8.1.2.3	FCN = 3	51
8.1.2.4	FCN = 5	51
8.2	CAN_RCV FB	52
8.2.1	Parameters of CAN_RCV FB	53
8.3	CAN_SEND FB	56
8.3.1	Parameters of CAN_SEND FB	57
8.3.2	SendReceiveErrorCode FC	60
9	Program group “CM module: transparent CAN”	61

Content

Content

	Copyright IXXAT Automation GmbH
	4
	Produktname-Handbuch, Version

	Copyright HMS Technology Center Ravensburg GmbH
	3
	<Product Name> Manual, Version

[bookmark: _Toc482689659]Introduction
This document describes the transparent CAN demo of the CM CANopen that uses the Transparent CAN interface FBs of the “CM CANopen Function Blocks V13 Ver. 2.0.0” library.

The demo explains how to communicate with one CM CANopen running in transparent CAN mode
· to read (upload) received CAN frames
· to write (download) CAN frames to be transmitted to the CAN network
· to process the different FCN function codes of CAN_CTRL
· to process “Get Diagnostic Information”

The demo must be enhanced if the PLC shall communicate with several CM CANopen modules running in transparent CAN mode.

Hint: “CM CANopen Function Blocks V13 Ver. 2.0.0” library
· The function blocks have been revised to provide more performance, more security and more flexibility
· The interface of the function blocks differs from the description in the user manual of the CM CANopen
· This library will be available on the homepage when the manual of the CM module has been revised and released

Replacement of the PLC:
If the PLC cannot be replaced directly:
· replace the PLC of the demo by a PLC similar to the finally used one
replace this PLC by the actual used PLC afterwards
· if the catalog does not provide the PLC to be used
=> make a library of the demo
=> import this library in your project

[bookmark: _Toc482689660]Restrictions

The CM CANopen supports CAN 2.0A (11 bit CAN identifier) but it does not support CAN 2.0B (29 bit CAN identifier).

[bookmark: _Toc482689661]Synonyms / Abbreviations

	Name / Abbreviation
	Description

	CAN-ID
	CAN identifier

	RTR
	Remote Transmission Request

The CAN specification allows that the transmission of a CAN frame can be requested by another module.
An RTR CAN frame
· does not carry data
· requests the transmission of a CAN frame
· with the CAN-ID of the RTR frame
· with the number of data bytes that are indicated by the RTR frame

hint:
· a CAN device can but it must not support an RTR request

	RTR info
	Information if the CAN frame is a standard or RTR CAN frame

	DLC
	Data Length Code
· standart CAN frame (no RTR request):
	number of data bytes transferred by the 	CAN frame
	0 data byte is a valid value
· RTR request:
	the requested CAN frame should	transfer the indicated number of data
 	bytes

	MSB
	Most Significant Byte
e.g.:
 	16#1234 => MSB = 16#12

	LSB
	Least Significant Byte
e.g.:
 	16#1234 => LSB = 16#34

[bookmark: _Toc482689662]Related Documents

	Document name
	Author

	CM CANopen - User Manual.pdf
Rev 1.00
	HMS

	
	

[bookmark: _Toc482689663]Overview of the transparent CAN demo
The transparent CAN demo shall receive and process the CAN frames with the CAN-IDs 101h and 102h and transmit CAN frames with the CAN-IDs 201h, 202h and 203.

Description of OB 1:
Network 1:
		processing of a CAN_CTRL command

		demo:
		demo automatically enables the reception of all CAN-IDs

Network 2:
		upload and processing of received CAN frames

Network 3:
		check if CAN frames shall be transmitted
		transfer of the requested CAN frames to the CM module

Network 4:
		process “Get Diagnostic Information”

[bookmark: _Toc482598237]

[bookmark: _Toc482689664]Hardware identifier of the CM module
The hardware address / hardware identifier of the CM CANopen module that is passed to the HW_ID input of
· the CAN_CTRL FB
· the CAN_RCV FB
· the CAN_SEND FB
· the used RDREC instance to process “Get Diagnostic Information”
can be read in the hardware configuration of the CM CANopen module in TIA Portal:

[image:]

Alternatively the “System constant” can be used

[image:]

The demo uses the system constant: "Local~CM_CANopen_1"

[bookmark: _Ref459647744][bookmark: _Toc482689665]Processing of a CAN_CTRL command
The demo automatically enables all CAN-IDs in the acceptance filter of the CM module after power on.
The demo does not process another CAN_CTRL command afterwards.

The processing of a CAN_CTRL command is controlled by
“Api_CtrlCAN_DB“.sCtrl
· this structure provides all variables that are necessary to process a CAN_CTRL command

“Api_CtrlCAN_DB“.sCtrl.fREQ
· controls the InOut parameter REQ of CAN_CTRL FB
· default value of the demo:
	“Api_CtrlCAN_DB“.sCtrl.fREQ = TRUE
		=> run CAN_CTRL command

hint:
	the variable that controls the REQ InOut parameter
	- is automatically cleared by CAN_CTRL FB
		when the requested command has been processed
	- must not be changed
 		while output BUSY of CAN_CTRL FB is TRUE	

“Api_CtrlCAN_DB“.sCtrl.iFCN
· controls the Input parameter FCN of CAN_CTRL FB
· default value of the demo:
	“Api_CtrlCAN_DB“.sCtrl.iFCN = 1
		=> process “set acceptance filter”

“Api_CtrlCAN_DB“.sCtrl.uiLen_BufferLimit
· controls the Input parameter LEN_BufferLimit of CAN_CTRL FB
· default value of the demo:
	“Api_CtrlCAN_DB“.sCtrl.uiLen_BufferLimit = 1
		=> 1 CAN-ID is written by the set acceptance filter
 		 command

“Api_CtrlCAN_DB“.sCtrl.awCANIds
· passes CAN identifiers that shall be enabled / disabled in the acceptance filter of the CM module to the Input parameter CANIdList of CAN_CTRL FB
· default value of the demo:
	demo enables all CAN identifiers
	=> "Api_CtrlCAN_DB".sCtrl.awCANIds.FCN_1_CANIDList[0]
		 = 16#FFFF
	=> FCN = 1 and LEN_BufferLimit = 1

Hint
· The demo does not evaluate the outputs
	BUSY, RET and CAN_STATUS of CAN_CTRL FB
· it is highly recommended not to ignore them
- they provide important information which may require specific actions

The processing of a CAN_CTRL command is based on the following steps
1. condition
there is no running CAN_CTRL command
	“Api_CtrlCAN_DB“.sCtrl.fREQ must be FALSE

initialize the data for the input parameters of the CAN_CTRL FB
FCN:
	“Api_CtrlCAN_DB“.sCtrl.iFCN

FCN specific:
	FCN = 1:
		“Api_CtrlCAN_DB“.sCtrl.uiLen_BufferLimit
		“Api_CtrlCAN_DB“.sCtrl.awCANIds
	FCN = 2:
		“Api_CtrlCAN_DB“.sCtrl.uiLen_BufferLimit	
	FCN = 3:
		no additional data	
	FCN = 5:
		no additional data

2. request the processing of the command
	“Api_CtrlCAN_DB“.sCtrl.fREQ = TRUE

note
	the variable that controls the InOut parameter REQ must not be
 	changed while output BUSY of CAN_CTRL FB is TRUE!
	CAN_CTRL FB automatically clears the variable that controls the
 	InOut parameter REQ when the command has been processed!

3. check if the command has been processed
the command has been processed when output BUSY has switched to FALSE:
 	when output BUSY has switched to FALSE
	- the variable that controls the InOut parameter REQ is cleared	- output RET and CAN_STATUS are valid and must be
	 evaluated
	- a new CAN_CTRL command can be requested	

[bookmark: _Toc482689666]Adaption of the Demo
This chapter shows how the demo must be used to process application specific CAN_CTRL commands.

[bookmark: _Toc482689667]Set Acceptance Filter FCN: 1

Enter the CAN-IDs that shall be received in
· “Api_CtrlCAN_DB“.sCtrl.awCANIds
· set leading bit 15 will enter the CAN-ID in the acceptance filter list
· cleared leading bit 15 will remove the CAN-ID from the acceptance filter list
· maximum 118 CAN-IDs can be written per command
· hint: disable all CAN-IDs
· no CAN-ID is transferred to the CM module
	
Update the number of CAN-IDs to be downloaded
· “Api_CtrlCAN_DB“.sCtrl.uiLen_BufferLimit
 	:= number of CAN-IDs to be downloaded
· hint: disable all CAN-IDs
· disable all CAN-IDs is indicated by number of CAN-IDs = 0
· “Api_CtrlCAN_DB“.sCtrl.uiLen_BufferLimit := 0
· no CAN-ID is transferred to the CM module
· downloaded CAN-IDs: not relevant for disable all CAN-IDs
first written:
 Api_CtrlCAN_DB“.sCtrl.awCANIds.FCN_1_CANIDList[0]
 …
last written:
 „Api_CtrlCAN_DB“.sCtrl.awCANIds.FCN_1_CANIDList[number CAN-IDs - 1]

Select the function code
· “Api_CtrlCAN_DB“.sCtrl.iFCN := 1

Request the processing of the command
· “Api_CtrlCAN_DB“.sCtrl.fREQ := TRUE

Example:
· 3 CAN-IDs shall be configured in the acceptance filter list
· CAN-ID 101h and 102h shall be enabled
=> „Api_CtrlCAN_DB“.sCtrl.awCANIds.FCN_1_CANIDList[0] = 16#8101
=> „Api_CtrlCAN_DB“.sCtrl.awCANIds.FCN_1_CANIDList[1] = 16#8102
· CAN-ID 234h shall be disabled
=> „Api_CtrlCAN_DB“.sCtrl.awCANIds.FCN_1_CANIDList[2] = 16#0234
· note:
set bit 15 indicates that the CAN identifier shall be received
not set bit 15 indicates that the CAN identifier shall not be received

[image:]

[bookmark: _Toc482689668]BUFFER LIMIT REACHED FCN: 2

Enter the BUFFER LIMIT REACHED value in
· “Api_CtrlCAN_DB“.sCtrl.uiLen_BufferLimit
 	:= value of BUFFER LIMIT REACHED
· 1 <= value of BUFFER LIMIT REACHED <= 256
· default value: 256
· hint:
· an alarm is generated on the PLC when the receive FIFO of the CM module holds minimum buffer limit unread CAN frames

Select the function code
· “Api_CtrlCAN_DB“.sCtrl.iFCN := 2

Request the processing of the command
· “Api_CtrlCAN_DB“.sCtrl.fREQ := TRUE

[bookmark: _Toc482689669]Clear RX Buffer FCN: 3

Select the function code
· “Api_CtrlCAN_DB“.sCtrl.iFCN := 3

Request the processing of the command
· “Api_CtrlCAN_DB“.sCtrl.fREQ := TRUE

[bookmark: _Toc482689670]Reset CAN Controller FCN: 5

Select the function code
· “Api_CtrlCAN_DB“.sCtrl.iFCN := 5

Request the processing of the command
· “Api_CtrlCAN_DB“.sCtrl.fREQ := TRUE

Hint: Reset CAN controller
· clears the acceptance filter list
· clears the receive queue and the transmit queue
· starts the CAN controller
· the value of BUFFER LIMIT REACHED is not reset to default

[bookmark: _Ref459647602][bookmark: _Ref459647639][bookmark: _Toc482689671]Upload / processing of received CAN frames
The upload and processing of CAN frames is processed by
 	Api_UploadCANFrames [FC3].

[bookmark: _Ref480870927][bookmark: _Toc482689672]General information
Overview:
· up to 19 CAN frames are uploaded per processed CAN_RCV command

· the CAN frames are uploaded according their order of reception
· first uploaded CAN frame oldest received CAN frame
· nth uploaded CAN frame nth oldest received CAN frame
· hint:
· a previous received CAN is not removed from the receive FIFO of the CM module when a CAN frame with the same CAN identifier is received

· the CAN frames are transferred to the application by a byte array
· data type of the byte array is fix:
“CANFrames” =>	 abCANFrames	Array[0..227] of Byte

· each CAN frame always covers 12 bytes in the byte array
· CAN identifier:
1. byte:	most significant byte of the CAN identifier
2. byte: 	least significant byte of the CAN identifier
· RTR information:
3. byte: 	RTR information:
		= 0: 	no RTR request
			=> CAN frame transfers data bytes
			 - number of data bytes:
			 see “number of data bytes” below
		<> 0: 	RTR request
			=> CAN frame does not transfer data bytes
			=> requests the transmission of the assigned 			 CAN frame
 			 - with the CAN identifier of the received CAN
			 frame
			 - and “number of data bytes” data bytes

· number of data bytes:
4. byte: 	number of data bytes
		- no RTR request:
 			that are transferred by the CAN frame
		- RTR request:
 			that should be transferred by the requested
 			CAN frame

· data:		only relevant for “no RTR request”
5. - 12. byte: data
		5. byte:
		=> 1. data byte in the data field of the CAN message
		…		
		12. byte:		
		=> 8. data byte in the data field of the CAN message

[bookmark: _Toc482689673]Example

Byte array:
· demo copies the uploaded CAN frames to
	"Api_CtrlCAN_DB".sRCV.Data

Order of reception:
· first uploaded CAN frame 	oldest received CAN frame in the receive
 					FIFO of the CM module

CAN frame covers
	"Api_CtrlCAN_DB".sRCV.Data.abCANFrames[0]
	…
	"Api_CtrlCAN_DB".sRCV.Data.abCANFrames[11]

· nth uploaded CAN frame 	nth oldest received CAN frame in the 						receive FIFO of the CM module

CAN frame covers
	"Api_CtrlCAN_DB".sRCV.Data.abCANFrames[(n-1) * 12 + 0]
	…
	"Api_CtrlCAN_DB".sRCV.Data.abCANFrames[[(n-1) * 12 + 11]

Example for the nth CAN frame:
· offset of the nth CAN frame in the byte array:
	offset = (n-1) * 12

· CAN-ID CAN identifier:
MSB of CAN-ID := "Api_CtrlCAN_DB".sRCV.Data.abCANFrames[offset]
LSB of CAN-ID := "Api_CtrlCAN_DB".sRCV.Data.abCANFrames[offset + 1]

e.g.:
	MSB of CAN-ID := 16#01
	LSB of CAN-ID := 16#23

	=> CAN identifier := 16#0123

· RTR information:
RTR info := "Api_CtrlCAN_DB".sRCV.Data.abCANFrames[offset + 2]
=> RTR info = 0 => 	no RTR request
=> RTR info <> 0 => 	RTR request
			 	=> data field does not contain data	

· number of data bytes DLC (Data Length Code)
DLC := "Api_CtrlCAN_DB".sRCV.Data.abCANFrames[offset + 3]

· data:
· data field is only relevant for RTR info = 0
· "Api_CtrlCAN_DB".sRCV.Data.abCANFrames[offset + 4]
=> 1. data byte in the data field of the CAN frame
 only valid if DLC >= 1
· "Api_CtrlCAN_DB".sRCV.Data.abCANFrames[offset + 5]
=> 2. data byte in the data field of the CAN frame
 only valid if DLC >= 2
· …
· "Api_CtrlCAN_DB".sRCV.Data.abCANFrames[offset + 11]
=> 8. data byte in the data field of the CAN frame
 only valid if DLC = 8

[bookmark: _Toc482689674]Api_UploadCANFrames [FC3]

Api_UploadCANFrames [FC3]
· processes the upload of the received CAN frames from the CM module
· processes / simulates the application to evaluate the uploaded CAN frames

The processing of the upload of CAN frames command is controlled by
“Api_CtrlCAN_DB“.sRCV
· this structure provides all variables that are necessary to process a CAN_RCV command
“Api_CtrlCAN_DB“.sRCV.Data
· the uploaded CAN frames are copied to this byte array

The processing of the uploaded CAN frames by the demo
· is based on CAN-ID specific callback functions
· the callback functions of the demo are provided by the folder:
	Application: CAN-Id specific callback functions / Upload
· the CAN-ID specific callback functions of the demo update the received data
· the updated data are provided by:
	“CAN_Data_DB”.InputData

each CAN-ID of the demo has its own data structure

· CAN_Data_DB [DB2] is provided by the folder:
	Application: CAN data

Overview: Api_UploadCANFrames [FC3]
· processes the upload of CAN frames:
		see: line 129 – 135
· checks if upload has been processed
		see: line 140 – 143
· analyses the result of the processed upload
· check if an error has been detected
	see: line 152 - 158
· check if CAN frames have been uploaded
	see: line 161 - 171
· processes the uploaded CAN frames
		see: line 173 – 233
· demo also updates the CAN status for the application
see: line 147 – 150
General notes:
· The received CAN frames are uploaded by CAN_RCV FB according their order of reception:
 	first received first uploaded

· Maximum 19 CAN frames can be uploaded by one successfully processed CAN_RCV command.

· Demo uses CAN-ID specific callback functions to process the uploaded CAN frames.
CAN-ID specific callback functions
· know how to interpret the data of the CAN frame that is assigned with a specific CAN-ID
· which variables must be updated
· see 4.2.1 and 4.3

Processing of CAN_RCV FB
see line 129 - 135
Input parameter REQ of CAN_RCV FB
	always TRUE
InOut parameter CAN_FRAMES of CAN_RCV FB
	the uploaded CAN frames are copied to:
		"Api_CtrlCAN_DB".sRCV.Data
All Output parameters are invalid until Output BUSY has switched to FALSE
Uploaded CAN frames
· are available if Output BUSY has switched to false
and no error has been detected (Output RET = 0)
· Output NO_FRAMES informs about the number of uploaded CAN frames
CAN status
· is available when Output BUSY has switched to FALSE
and bit 15 of Output CAN_STATUS is set

Hint
· demo does not evaluate the output RET of CAN_RCV FB

[bookmark: _Ref460845328][bookmark: _Ref460845367][bookmark: _Ref460845557][bookmark: _Ref460845665][bookmark: _Toc482689675]Processing of the uploaded CAN frames
The uploaded CAN frames are processed by Api_UploadCANFrames [FC3] when CAN_RCV FB has been processed successfully and CAN frames have been uploaded:
· see line 161 – 171 of Api_UploadCANFrames [FC3]
· no CAN frame has been uploaded
or the number of uploaded CAN frames is out of range
· see line 173 – 233 of Api_UploadCANFrames [FC3]
· processing of the uploaded CAN frame(s) by the demo

Processing of the uploaded CAN frame(s) by Api_UploadCANFrames [FC3]:
· line 182:
	initialization of the offset of the first uploaded CAN frame in the
 	byte array
· line 185:
	loop over the uploaded CAN frames
· line 189 - 190:
	get CAN identifier of the current processed CAN frame
· line 193 - 226:
call the CAN identifier specific callback function

this part is application specific and must be coded by
the customer

the customer has to replace the cases of the demo
	line 202 - 213
	line 215 - 220
and has to enter its cases and CAN-identifier specific callback functions
	see also 4.3
· line 231:
	update the offset of the next uploaded CAN frame in the
 	byte array

[bookmark: _Ref460844091][bookmark: _Toc482689676]Processing of the data of an uploaded CAN frame
Demo uses CAN-ID specific callback functions.

These CAN-ID specific callback functions know
· how many data bytes are transferred by the CAN frame assigned with a specific CAN identifier
· how to interpret the received data and which variables must be updated

The customer
· must code its application specific CAN-ID specific callback functions
· must replace the cases of the demo in Api_UploadCANFrames [FC3]
	line 202 - 213
	line 215 – 220
· must enter its application specific cases and CAN-ID specific callback functions in Api_UploadCANFrames [FC3]
	line 202 - 220

[bookmark: _Ref480871051][bookmark: _Toc482689677]Description of the CAN-ID specific callback functions of the demo
These callback functions are only examples!

They are provided by the folder:
	CM module: transparent CAN
	 / Application: CAN-ID specific callback functions
	 / Upload

GetDataCANId_101h [FC1]
· callback function for CAN frame with CAN-ID 101h

demo assumes:
· CAN frame transfers 8 data bytes
· CAN frame transfers the data of
· “CAN_Data_DB”.InputData.CAN_ID_101h.RealData
“CAN_Data_DB”.InputData.CAN_ID_101h.IntData
“CAN_Data_DB”.InputData.CAN_ID_101h.WordData
· layout of the data field of the CAN frame:
· data of “CAN_Data_DB”.InputData.CAN_ID_101h.RealData:
	CAN data byte 1 bits 0 - 7 of the value
	CAN data byte 2 bits 8 - 15 of the value
	CAN data byte 3 bits 16 - 23 of the value
	CAN data byte 4 bits 24 - 31 of the value
· data of “CAN_Data_DB”.InputData.CAN_ID_101h.IntData:
	CAN data byte 5 bits 0 - 7 of the value
	CAN data byte 6 bits 8 - 15 of the value
· data of “CAN_Data_DB”.InputData.CAN_ID_101h.WordData:
	CAN data byte 7 bits 0 - 7 of the value
	CAN data byte 8 bits 8 - 15 of the value

GetDataCANId_102h [FC2]
· callback function for CAN frame with CAN-ID 102h

demo assumes:
· CAN frame transfers 2 data bytes
· CAN frame transfers the data of
· “CAN_Data_DB”.InputData.CAN_ID_102h.ByteData
“CAN_Data_DB”.InputData.CAN_ID_102h.USIntData
· layout of the data field of the CAN frame:
· data of “CAN_Data_DB”.InputData.CAN_ID_102h.ByteData:
	CAN data byte 1 value
· data of “CAN_Data_DB”.InputData.CAN_ID_102h.USIntData:
	CAN data byte 1 value
[bookmark: _Toc46796492]
[bookmark: _Toc482689678]Adaption of the Demo
Each CAN identifier that shall be received needs its CAN identifier specific callback function
· CAN frame transfers data:
· to evaluate the transferred data
· minimum the number of data bytes that are expected by the CAN-ID specific callback function must be passed as data byte inputs to the function
· RTR request
· to be able to react to a RTR request
· no data byte inputs are required
· GetDataCANId_101h [FC1] and GetDataCANId_102h [FC2] can be used as a template for the CAN-ID specific call back functions.

The adaption to the application consists of
· the implementation of the CAN-ID specific call back functions
· adaption of Api_UploadCANFrames [FC3]
	line 202 - 220

 	
[bookmark: _Ref459647658][bookmark: _Toc482689679]Download of CAN frames
The initialization of the CAN frames that shall be written to the CM module and the download of the CAN frames is processed by
 	Api_DownloadCANFrames [FC4].
[bookmark: _Ref480870854][bookmark: _Ref480870901][bookmark: _Toc482689680]General information
Overview:
· up to 19 CAN frames can be downloaded per processed CAN_SEND command

· the CAN frames are entered in the transmit FIFO of the CM module according their order of transmission from the PLC to the CM module
· first downloaded CAN frame first transmitted CAN frame
· nth downloaded CAN frame nth transmitted CAN frame

· the CAN frames are transferred to the CM module by a byte array
· data type of the byte array is fix:
“CANFrames” =>	 abCANFrames	Array[0..227] of Byte

· each CAN frame always covers 12 bytes in the byte array
· CAN identifier:
1. byte:	most significant byte of the CAN identifier
2. byte: 	least significant byte of the CAN identifier
· RTR information:
3. byte: 	RTR information:
		= 0: 	no RTR request
			=> CAN frame transfers data bytes
			 - number of data bytes:
			 see “number of data bytes” below
		<> 0: 	RTR request
			=> CAN frame does not transfer data bytes
			=> requests the transmission of a CAN frame
 			 - with the CAN identifier of the transmitted
			 CAN frame
			 - and “number of data bytes” data bytes
· number of data bytes:
4. byte: 	number of data bytes
		- no RTR request:
 			that are transferred by the CAN frame
		- RTR request:
 			that should be transferred by the requested
 			CAN frame

· data:		only relevant for “no RTR request”
5. - 12. byte: data
		5. byte:
		=> 1. data byte in the data field of the CAN message
		…		
		12. byte:		
		=> 8. data byte in the data field of the CAN message

[bookmark: _Toc482689681]Example

Byte array:
· demo enters the CAN frames to be written in
	"Api_CtrlCAN_DB".sSEND.Data

Order of transmission:
· first entered CAN frame 	next entered CAN frame in the transmit
 					FIFO of the CM module
					cases:
					- the transmit FIFO is empty:
					 => will be transmitted immediately
					- the transmit FIFO is not empty:
					 => will be transmitted when the older
					 CAN frames have been transmitted

 CAN frame covers
	"Api_CtrlCAN_DB".sSEND.Data.abCANFrames[0]
	…
	"Api_CtrlCAN_DB".sSEND.Data.abCANFrames[11]

· nth entered CAN frame 	nth next entered CAN frame in the 						transmit FIFO of the CM module

 CAN frame covers
	"Api_CtrlCAN_DB".sSEND.Data.abCANFrames[(n-1) * 12 + 0]
	…
	"Api_CtrlCAN_DB".sSEND.Data.abCANFrames[[(n-1) * 12 + 11]

Example for the nth CAN frame:
· offset of the nth CAN frame in the byte array:
	offset = (n-1) * 12

· CAN-ID CAN identifier:
“Api_CtrlCAN_DB“.sSEND.Data.abCANFrames[offset] := MSB of CAN-ID
“Api_CtrlCAN_DB“.sSEND.Data.abCANFrames[offset + 1] := LSB of CAN-ID

CAN identifier range: 0 <= CAN identifier <= 16#7FF

e.g.:
	CAN identifier := 16#0123	

	=> MSB of CAN-ID := 16#01
	 LSB of CAN-ID := 16#23

· RTR information:
“Api_CtrlCAN_DB“.sSEND.Data.abCANFrames[offset + 2] := RTR info

RTR info := 0 	=> 	no RTR request
RTR info <> 0 	=> 	RTR request
			 	=> data field does not contain data	

· number of data bytes DLC (Data Length Code)
“Api_CtrlCAN_DB“.sSEND.Data.abCANFrames[offset + 3] := DLC

DLC range: 0 <= DLC <= 8

· data:
· data field is only relevant for RTR info = 0
· “Api_CtrlCAN_DB“.sSEND.Data.abCANFrames[offset + 4]
=> 1. data byte in the data field of the CAN frame
 only valid if DLC >= 1
· “Api_CtrlCAN_DB“.sSEND.Data.abCANFrames[offset + 5]
=> 2. data byte in the data field of the CAN frame
 only valid if DLC >= 2
· …
· “Api_CtrlCAN_DB“.sSEND.Data.abCANFrames[offset + 10]
=> 10. data byte in the data field of the CAN frame
 only valid if DLC >= 7
· “Api_CtrlCAN_DB“.sSEND.Data.abCANFrames[offset + 11]
=> 8. data byte in the data field of the CAN frame
 only valid if DLC = 8

[bookmark: _Ref460844266][bookmark: _Toc482689682]Description of the demo
This chapter describes the methods of the demo
· which CAN frames shall be transmitted
	see 5.2.1
· how these CAN frames are entered in the byte array that is passed to CAN_SEND FB
	see 5.2.2
	see line 255 - 306 of Api_DownloadCANFrames [FC4]

[bookmark: _Ref480869583][bookmark: _Ref480869612][bookmark: _Ref480869784][bookmark: _Ref480870587][bookmark: _Ref480870655][bookmark: _Toc482689683]Download request

The demo uses a handshake between the “application” and the download of the CAN frames.
The “application” indicates
· if CAN frames shall be written to the CM module
· the number of CAN frames to be written
· maximum 19 CAN frames can be transferred per processed CAN_SEND command
· which CAN frames shall be written
· the CAN frames are notified by their CAN identifiers
· the CAN identifiers of the CAN frames are entered in a list according their order of transmission

Api_DownloadCANFrames [FC4]
· checks in its “idle” state (no download of CAN frames is running) if the “application” has requested the download of CAN frames
· enters the CAN frames according their order in the transmit list in the byte array that is passed to CAN_SEND FB
· indicates if an error has been detected when processing the download request
· clears the download request of the “application”
· which releases the interface for the “application”
so the “application can prepare the next download request
· saves the number of CAN frames to be written
· starts the download of the requested CAN frames
· condition:
the processing the download request has not detected an error
· indicates to the “application” that the download is running

Api_DownloadCANFrames [FC4]
· informs the “application” when the download has been processed
· informs the “application” about the result of the processed download
This handshake between the “application” and Api_DownloadCANFrames function is based on
· “Api_CtrlCAN_DB“.sSEND.sDemo

[bookmark: _Ref480870758][bookmark: _Toc482689684]Example
The “application” wants to transmit 3 CAN frames
· 1. transmitted CAN frame has the CAN identifier 16#201
· 2. transmitted CAN frame has the CAN identifier 16#203
· 3. transmitted CAN frame has the CAN identifier 16#202

Hint:
· The download of maximum 19 CAN frames can be requested per download request

The “application” requests the download of CAN frames:
the “application”
1. enters the CAN identifiers of the CAN frames according their order of transmission in the transmit list:
 1. transmitted CAN frame:
	=> “Api_CtrlCAN_DB“.sSEND.sDemo.sRequest.aiCAN_ID[0] := 16#201
 2. transmitted CAN frame:
	=> “Api_CtrlCAN_DB“.sSEND.sDemo.sRequest.aiCAN_ID[1] := 16#203
 3. transmitted CAN frame:
	=> “Api_CtrlCAN_DB“.sSEND.sDemo.sRequest.aiCAN_ID[2] := 16#202

2. updates the number of CAN frames to be transmitted
	=> Api_CtrlCAN_DB“.sSEND.sDemo.sRequest.siNoFrames := 3

3. indicates the download request
	=> “Api_CtrlCAN_DB“.sSEND.sDemo.sRequest.fReq := TRUE

Api_DownloadCANFrames [FC4] processes the download request:
· Api_DownloadCANFrames [FC4] checks in its “idle” state (no download of CAN frames is running) if the “application” has requested the download of CAN frames

· if “Api_CtrlCAN_DB“.sSEND.sDemo.sRequest.fReq = FALSE
	=> no CAN frames shall be written to the CM module
	=> no action

· if “Api_CtrlCAN_DB“.sSEND.sDemo.sRequest.fReq = TRUE

Api_DownloadCANFrames [FC4]
· enters the CAN frames according their order of transmission in the byte array that is passed to CAN_SEND FB
	see 5.2.1

· no error has been detected:
=> indicate: no error
	“Api_CtrlCAN_DB“.sSEND.sDemo.sRequest.fError := FALSE
=> indicate that the download to the CM module is running
	“Api_CtrlCAN_DB“.sSEND.sDemo.sDownload.fBusy := TRUE
=> download to the CM module is started

· an error has been detected:
=> indicate: error
	“Api_CtrlCAN_DB“.sSEND.sDemo.sRequest.fError := TRUE

possible reasons:
 => number of CAN frames is out of range
		see line 217 - 223 of Api_DownloadCANFrames [FC4]
 => a CAN frame could not be entered: its data are missing
		see line 309 - 334 of Api_DownloadCANFrames [FC4]

· indicate that the download request has been processed
release the download request interface
=> “Api_CtrlCAN_DB“.sSEND.sDemo.sRequest.fReq = FALSE
=> “Api_CtrlCAN_DB“.sSEND.sDemo.sRequest is available for the
 “application” for a new download request

Api_DownloadCANFrames [FC4] processes the download of the CAN frame(s) to the CM module:
· the download is running:
· “Api_CtrlCAN_DB“.sSEND.sDemo.sDownload.fBusy = TRUE

· the download has been finished:
· “Api_CtrlCAN_DB“.sSEND.sDemo.sDownload.fBusy := FALSE

· the “application” is informed about the result of the processed download
=> “Api_CtrlCAN_DB“.sSEND.sDemo.uiResult
 	:= RET output of CAN_SEND FB

[bookmark: _Ref480869647][bookmark: _Ref480870681][bookmark: _Toc482689685]Callback functions
Note that the CAN frames that shall be written are notified by their CAN identifiers:
	see 5.2.1

Demo uses CAN-ID specific callback functions to enter the CAN frames in the byte array that is passed to CAN_SEND FB.

These CAN-ID specific callback functions know
· the CAN identifier
· if it is an RTR CAN frame or not
· how many data bytes are transferred by the CAN frame
· the layout of the data field of the CAN frame
· where to get the data

Each CAN identifier that shall be transmitted needs its CAN identifier specific callback function.

Description of the mandatory parameters of a callback function:

Output parameters: (only output parameters are needed)

	Name
	Data Type
	Description

	CANId_MSB
	Byte
	MSB of the CAN identifier
e.g.:
	CAN identifier = 16#0765
	=> MSB = 16#07

	CANId_LSB
	Byte
	LSB of the CAN identifier
e.g.:
	CAN identifier = 16#0765
	=> LSB = 16#65

	RTR
	Byte
	RTR info:
 = 0: 	CAN frame is a regular CAN frame
 	that transfers data (0 - 8 data bytes)
<> 0: 	CAN frame is a RTR CAN frame
	that does not transfer data
	that requests the transmission of the CAN
 	frame with the same CAN identifier

	DataByteSize
	Byte
	DLC / number of data bytes

	DataByte1
	Byte
	1. data byte in the data field of the CAN frame

must be supported for:
· RTR info = 0 and DLC >= 1

	DataByte2
	Byte
	2. data byte in the data field of the CAN frame

must be supported for:
· RTR info = 0 and DLC >= 2

	DataByte3
	Byte
	3. data byte in the data field of the CAN frame

must be supported for:
· RTR info = 0 and DLC >= 3

	DataByte4
	Byte
	4. data byte in the data field of the CAN frame

must be supported for:
· RTR info = 0 and DLC >= 4

	DataByte5
	Byte
	5. data byte in the data field of the CAN frame

must be supported for:
· RTR info = 0 and DLC >= 5

	DataByte6
	Byte
	6. data byte in the data field of the CAN frame

must be supported for:
· RTR info = 0 and DLC >= 6

	DataByte7
	Byte
	7. data byte in the data field of the CAN frame

must be supported for:
· RTR info = 0 and DLC >= 7

	DataByte8
	Byte
	8. data byte in the data field of the CAN frame

must be supported for:
· RTR info = 0 and DLC >= 8

Note:
· The demo specific callback functions are examples for CAN frames
· that differ in the number of data bytes
· that differ in the RTR info
· EnterCANFrame_CANId_201h [FC20]:
	=> CAN frame that transfers 8 data bytes
· EnterCANFrame_CANId_202h [FC21]:
	=> CAN frame that transfers 4 data bytes
· EnterCANFrame_CANId_203h [FC22]
	=> RTR CAN frame

[bookmark: _Toc482689686]Implementation of a CAN identifier specific callback function
The implementation of a CAN identifier specific callback function is explained by EnterCANFrame_CANId_202h [FC21].

EnterCANFrame_CANId_202h [FC21]:
· callback function for CAN frame with the CAN identifier 16#202
· CAN frame always transfers 4 data bytes
· layout of the data field of the CAN frame

	Data field
of the CAN frame
	Transferred data

	1. data byte
	CAN_Data_DB”.OutputData.CAN_ID_202.IntData:
	LSB (bit 0 – 7)

	2. data byte
	CAN_Data_DB”.OutputData.CAN_ID_202.IntData:
	MSB (bit 8 – 15)

	3. data byte
	“CAN_Data_DB”.OutputData.CAN_ID_202.ByteData

	4. data byte
	“CAN_Data_DB”.OutputData.CAN_ID_202.USIntData

Description of the implementation:
· CAN identifier
· MSB of the CAN identifier: 	see line 52
· LSB of the CAN identifier: 	see line 53	
· RTR info					see line 56
· DLC / number of data bytes		see line 59
· Data						see line 66 – 71

[bookmark: _Ref480871070][bookmark: _Toc482689687]Description of the demo specific callback functions
Demo supports the transmission of CAN frames with the CAN identifiers 	16#201, 16#202 and 16#203
and provides for each CAN identifier its specific callback function.

Description of the callback functions of the demo:
· these callback functions are only examples !

· EnterCANFrame_CANId_201h [FC20]
callback function for the CAN frame transmitted with the CAN identifier
 	16#201

demo callback assumes:
· CAN frame always transfers 8 data bytes
· CAN frames transfers the data of
· “CAN_Data_DB”.OutputData.CAN_ID_201.RealData
“CAN_Data_DB”.OutputData.CAN_ID_201.DWordData
· layout of the data field of the CAN frame:
· data of “CAN_Data_DB”.OutputData.CAN_ID_201.RealData:
	CAN data byte 1 bits 0 - 7 of the value
	CAN data byte 2 bits 8 - 15 of the value
	CAN data byte 3 bits 16 - 23 of the value
	CAN data byte 4 bits 24 - 31 of the value
· data of “CAN_Data_DB”.OutputData.CAN_ID_201.DWordData:
	CAN data byte 5 bits 0 - 7 of the value
	CAN data byte 6 bits 8 - 15 of the value
	CAN data byte 7 bits 16 - 23 of the value
	CAN data byte 8 bits 24 - 31 of the value

· EnterCANFrame_CANId_202h [FC21]
callback function for the CAN frame transmitted with the CAN identifier
 	16#202

demo callback assumes:
· CAN frame always transfers 4 data bytes
· CAN frames transfers the data of
· 	“CAN_Data_DB”.OutputData.CAN_ID_202.IntData
	“CAN_Data_DB”.OutputData.CAN_ID_202.ByteData
	“CAN_Data_DB”.OutputData.CAN_ID_202.USIntData
· layout of the data field of the CAN frame:
· data of “CAN_Data_DB”.OutputData.CAN_ID_202.IntData:
	CAN data byte 1 bits 0 - 7 of the value
	CAN data byte 2 bits 8 - 15 of the value
· data of “CAN_Data_DB”.OutputData.CAN_ID_202.ByteData:
	CAN data byte 3 value
· data of “CAN_Data_DB”.OutputData.CAN_ID_202.USIntData:
	CAN data byte 4 value

· EnterCANFrame_CANId_203h [FC22]
callback function for the CAN frame transmitted with the CAN identifier
 	16#203

demo callback assumes:
· CAN frame is a RTR request message
· the requested CAN frame shall transfer 3 data bytes

[bookmark: _Toc482689688]Api_DownloadCANFrames [FC4]

Api_DownloadCANFrames [FC4]
· checks if CAN frames shall be transmitted
	see 5.2.1
· enters the CAN frames in the byte array that is written to the CM module
	see 5.2.2
· downloads the CAN frames to the CM module

The processing of the download of CAN frames command is controlled by
“Api_CtrlCAN_DB“.sSEND
· this structure provides all variables that are necessary to process a CAN_SEND command
“Api_CtrlCAN_DB“.sSEND.Data
· the CAN frames to be written are entered to this byte array
“Api_CtrlCAN_DB“.sSEND.usiNoFrames
· number of CAN frames that shall be be written to the CM module by the CAN_SEND command
“Api_CtrlCAN_DB“.sSEND.fTransfer
· state machine of Api_DownloadCANFrames [FC4]
	TRUE:	download of CAN frames is running
	FALSE:	new CAN frames can be downloaded
· flag is automatically controlled and updated by 	Api_DownloadCANFrames [FC4]

Note:
· the handshake mechanism between the “application” and Api_DownloadCANFrames [FC4] is described by 5.2.1.1

Overview: Api_DownloadCANFrames [FC4]
· check if idle (no download is running)
		see: line 183
· idle state:
· check if the application has not requested the download of CAN frames
	see: line 195 - 199
· idle state: 	the application has requested the download of CAN frames
· check if the number of CAN frames is out of range
	see: line 212 - 231
- number of CAN frames is out of range:
	=> indicate an error: 	line 222
	=> clear the request: 	line 227
	=> return
· idle state: 	enter the CAN frames in the byte array that is passed to
 		CAN_SEND FB
· initialize
- the temporary counter of CAN frames that have been entered in
 the data field: 			line 239
- the CAN frame offset for the first CAN message in the data field:					line 240
· loop over the CAN frames that shall be transmitted entered in the data field: 				line 243 - 343
· enter the CAN frame in the data field
- get the CAN identifier from the transmit list and switch to the
 CAN identifier case:		line 246 - 335
- call the CAN identifier specific callback function:
					line 255 - 306

 note:
 - this part is application specific and must be coded by the
 customer
 - the customer has to replace the cases of the demo
		line 255 - 275
		line 277 - 293
		line 295 - 306
 by the application specific cases and callback functions

· no case / no CAN identifier specific callback function is coded for the requested CAN identifier: 	line 309 - 334
- the processing of the download request is aborted
	=> indicate an error: 	line 330
	=> clear the request: 	line 331
	=> return
· update
- the temporary counter of CAN frames that have been entered in
 the data field: 			line 338
- the CAN frame offset for the next CAN message in the data field:					line 341
· signal that the download request has been processed:
- clear the request: 		line 356	

· start the download to the CM module
- signal that the download is running
					line 384
- save the number of CAN frames to be currently downloaded
					line 395
- update the state machine of Api_DownloadCANFrames [FC4]
					line 399
· note: line 366 – 374
- these checks are not necessary but they are useful during
 development

· download state: 	run the download of the CAN frames / processing of 			CAN_SEND FB
						line 408 - 414

· download state: 	check if the download has been processed
· running download			line 419 - 421
· processed download		line 423 - 450
- inform the application
 => about the result		line 431
 => processed download	line 432
					
- update the CAN status		line 436 – 439

- update the state machine of Api_DownloadCANFrames [FC4]
					line 450

[bookmark: _Toc482689689]Adaption of the Demo
The adaption to the application consists of
· the implementation of the CAN-ID specific call back functions
· adding the CAN identifier specific cases and their callback functions in Api_DownloadCANFrames [FC4]:
	see line 255 - 306 of Api_DownloadCANFrames [FC4]

[bookmark: _Toc482689690]Processing of a “Get Diagnostic Information” command

Note:
· The information that is received by “Get Diagnostic Information” is also provided by the output CAN_STATUS of CAN_CTRL FB, CAN_RCV FB and CAN_SEND FB

Api_GetDiagnosticInfo [FC7]
· reads the diagnostic information from the CM module
· and analyses the read diagnostic information
· this part must be coded by the customer

The processing of the “Get Diagnostic Information” command is controlled by
"Api_CtrlCAN_DB".sDIAG
· this structure provides all variables that are necessary to process a “Get Diagnostic Information” command
“Api_CtrlCAN_DB“.sDIAG.fReq
· the processing of a “Get Diagnostic Information” command is requested by this flag
· it controls the REQ inout parameter of Api_GetDiagnosticInfo function

note:
=> 	the flag that controls the REQ inout parameter must not be
 	cleared by the application
=>	it is automatically cleared by of Api_GetDiagnosticInfo [FC7]
	when the command has been processed

“Api_CtrlCAN_DB“.sDIAG.Data
· read diagnostic information are copied to this word array

Overview: Api_GetDiagnosticInfo [FC7]
· check if “Get Diagnostic Information” command shall be processed
· if not:		see: line 35 – 39
=> no action
=> return		
· “Get Diagnostic Information” command shall be processed / is running:
· read the diagnostic information from the CM module
	see: line 44 - 53
· check if the “Get Diagnostic Information” has been read processed
· if not:		see: line 59 – 62
=> no action
=> return
· “Get Diagnostic Information” has been read
· data is only available
if RDREC has not indicated an error and data is valid
	see: line 73 – 122

note:
	please read the comments
	this part must be coded by the customer

· RDREC has detected an error
	see: line 124 - 130
· “Get Diagnostic Information” has been read
· clear request / indicate that the requested command has been processed
	see: line 142
[bookmark: _Toc482689691]CAN Status, Api_CANStatus [FC6]
The output CAN_STATUS of CAN_CTRL FB, CAN_RCV FB and CAN_SEND FB inform about the current CAN status of the CM module when the requested command has been processed
· successfully
· CAN status is always transferred
· not successfully
· it depends of the kind of error if the CAN status is transferred

Description of the output CAN_STATUS of CAN_CTRL FB, CAN_RCV FB and CAN_SEND:
· CAN_STATUS is bit coded
· CAN_STATUS is only valid if bit 15 is set
· e.g.:
CAN_STATUS = 16#8xxx valid
CAN_STATUS = 16#0xxx not valid
· description of the single bits:
· bit 0: set bus off
· bit 1: set error passive
· bit 2: set receive queue: full
		receive queue holds 256 unread CAN frames	
· bit 3: set receive queue: half full
		receive queue holds minimum 128 unread CAN
 		frames
· bit 4: set receive queue: warning limit reached
		receive queue holds minimum “BUFFER LIMIT 			REACHED” unread CAN frames
· bit 5: set receive message lost
		a message could not be entered in the receive queue
· bit 6: set transmit queue: half full
		transmit queue holds minimum 127 CAN frames that
 		have not been transmitted yet
· bit 7: set transmit queue: warning limit reached
		maximum 19 free CAN frame entries are left in the
 		transmit queue
· bit 8 - 14:	reserved / not used

Note:
· Api_CANStatus [FC6] that updates "Api_CtrlCAN_DB".wCANStatus
is automatically called by Api_UploadCANFrames [FC3],
				 Api_DownloadCANFrames [FC4]
when the CAN status is available
[bookmark: _Toc482689692]Description of the transparent CAN FBs
This chapter describes the revised transparent CAN FBs that are provided by the “CM CANopen Function Blocks V13 Ver. 2.0.0“ library.

[bookmark: _Toc482689693]CAN_CTRL FB
Description
This block is used to control the state of the transparent CAN layer and to set its parameters.

Hint
· It is not possible that several CAN_CTRL commands are concurrently written to the same CM module
· Parallel processed CAN_CTRL commands to different CM modules must be processed by different instances of CAN_CTRL FB
· Each CAN_CTRL command can be processed at any time

Settings of the CM module after power on or reset CAN controller
· all CAN-IDs are disabled in the acceptance filter
the CM module will not receive any CAN frame until the acceptance filter has been configured to receive CAN frames
· the transmit queue is cleared
all pending CAN frames that have not been transmitted when “Reset CAN controller” has been requested are removed from the transmit queue
· the receive queue is cleared
all pending CAN frames that have been received before “Reset CAN controller” has been requested are removed from the receive queue
· value of BUFFER LIMIT REACHED:
- power on: 	256
- reset:	value is not changed by reset CAN controller

[bookmark: _Toc467585504][bookmark: _Toc457542593][bookmark: _Toc482689694]Parameters of CAN_CTRL FB

Input parameters:

	Name
	Data Type
	Description

	HW_ID
	HW_IO
	hardware identifier of the accessed CM module

see TIA Portal:
 Device configuration
 => CM module
 => General
 => CANopen interface
 => Hardware identifier

	FCN
	Int
	Function code:
 1: Set acceptance filter in the module
 2: BUFFER LIMIT REACHED
 set number of frames to store before
 warning
 3: Clear RX buffer
· no additional data
 4: (reserved)
 5: Reset CAN controller
· clears Bus Off
· clears the receive FIFO
· clears the transmit FIFO
· clears the acceptance filter
· starts the CAN controller

· no additional data

	LEN_BufferLimit
	UInt
	Only relevant for the function codes
· FCN = 1:
number of CAN Ids to be transferred
to the CM module
 	0 <= value <= 118
· FCN = 2:
value of BUFFER LIMIT REACHED
 	0 < value <= 256

otherwise it is ignored

	CANIdList
	"FCN_1_CANIDList"
	Only relevant for the function code
· FCN = 1:
pointer to the CAN identifier list

it is ignored for
	LEN_BufferLimit = 0

otherwise it is ignored

Note: "FCN_1_CANIDList"
· this data type is provided by the “CM CANopen Function Blocks V13 Ver. 2.0.0” library
· "FCN_1_CANIDList" shall not be changed by the customer!

InOut parameters:

	Name
	Data Type
	Description

	REQ
	Bool
	TRUE:
· run the requested command
· hint
· flag is automatically cleared by
CAN_CTRL when the command
has been processed
· it must not be reset while the
command is running

FALSE:
· initialize CAN_CTRL FB but do not run
a command
· the CM module is not accessed
· output CAN_STATUS is not
updated
· all input parameters are ignored

Output parameters:

	Name
	Data Type
	Description

	BUSY
	Bool
	If the function block needs more than one cycle to complete a command, this output is set to TRUE.
It stays TRUE until the function block is done, then it is set to FALSE.

BUSY = TRUE indicates that a command is running

	RET
	UInt
	Error code
see “Error Codes (RET)” of CAN_CTRL described in the manual of the CM module.

RET = 0 no error

additional error codes:
· 16#109C
- FCN = 1
 => 	LEN_BufferLimit > 118
· 16#109E
- FCN = 1
 => 	minimum one CAN-ID is out of
 	range
- FCN = 2
 => 	LEN_BufferLimit: out of range
		either 0 or > 256
· 16#109F
invalid state of the state machine of
CAN_CTRL

Valid once the BUSY signal turns FALSE until the next call of the function block.

	CAN_STATUS
	Word
	CAN status:
bit coded:
- bit 0 set: Bus off
- bit 1 set: error passive
- bit 2 set: receive queue: full
- bit 3 set: receive queue: half full
 receive FIFO holds minimum 128
 	 unread CAN frames
- bit 4 set: receive queue: warning limit
 reached
 receive FIFO holds minimum
 BUFFER LIMIT REACHED
 	 unread CAN frames
- bit 5 set: receive message lost
- bit 6 set: transmit queue: half full
 transmit FIFO holds minimum
 127 CAN frames that have not
 been transmitted yet 	
- bit 7 set: transmit queue: warning limit
 reached
 maximum 19 free CAN frame
 entries are left in the transmit
 FIFO 	
- bit 8 - 14: not used
- bit 15 set: valid

CAN_STATUS is only valid if bit 15 is set
CAN_STATUS = 16#8000 valid: no error

Note: CAN_STATUS
· An alarm will be generated if any bit except bit 15 (valid bit) is set
· The alarm is cleared when all bits 0 – 14 are reset

[bookmark: _Toc482689695]Function Codes
This chapter describes the supported function codes of the CAN_CTRL FB.

[bookmark: _Toc482689696]FCN = 1
Function code 1 configures the CAN_RCV acceptance filter in the module i.e. what CAN-IDs will be accepted when receiving data frames.
The module will not listen to the CAN bus if no CAN-ID in the filter is enabled.

Note:
· the acceptance filter can be changed at any time
· any (including all) CAN-ID(s) can be enabled / disabled by a later requested “Set Acceptance filter” command

Number of transferred CAN-IDs by the current command:
· The input parameter LEN_BufferLimit is set to n, where n is the total number of valid CAN-IDs transmitted by this command.
· One or more (maximum 118) CAN-IDs can be transmitted per command.
· LEN_BufferLimit = 0
	will disable all CAN-IDs in the acceptance filter
	the CM module will not receive any CAN frame

Area where to get the CAN-ID list:
· The CAN-IDs are passed to CAN_CTRL by the input parameter CANIdList which points to an Array[0..117] of Word:
· see data type: "FCN_1_CANIDList"
· the content of Array[0] is processed first
· the content of Array[LEN_BufferLimit - 1] is processed last

Description of an entry in CANIdList:
· bits 0 – 10 contain the CAN-ID
· 29 bit CAN-IDs are not supported
· data format:	big endian
· bit 15 informs whether to enable (receive) or disable (do not receive) the CAN-ID in the acceptance filter
	bit 15: 	set 		 enable
			not set	 disable
· e.g.:
· enable CAN-ID 16#123
	“DB_Example”.CANIds.FCN_1_CANIDList[x] = 16#8123
· disable CAN-ID 16#123
	“DB_Example”.CANIds.FCN_1_CANIDList[x] = 16#0123
Special CAN-IDs:
· enable all CAN-IDs
· CAN-ID 16#FFFF enables all CAN-IDs
· e.g.:
- enable all
	=> “DB_Example”.CANIds.FCN_1_CANIDList[0] = 16#FFFF
	=> LEN_BufferLimit := 1
- enable all except CAN-ID 0
	=> “DB_Example”.CANIds.FCN_1_CANIDList[0] = 16#FFFF
	 “DB_Example”.CANIds.FCN_1_CANIDList[1] = 16#0000	
	=> LEN_BufferLimit := 2
· disable all CAN-IDs ID
· LEN_BufferLimit := 0
· CANIdList is ignored

[bookmark: _Toc482689697]FCN = 2
Function code 2 configures warning limit of the receive FIFO on the CM module.
It gives the opportunity to define what number of frames will be stored in the receive FIFO, before CAN status code bit 4 (BUFFER LIMIT REACHED) will be set.
Initially the buffer limit is set to 256, which means that the status bit will be set when the last place in the receive FIFO is used.
The user can change the buffer limit to any value between 1 and 256.

BUFFER LIMIT REACHED can be changed at any time.

Example:
· BUFFER LIMIT REACHED = 100
=> LEN_BufferLimit := 100

Note:
· An alarm will be generated when the receive FIFO of the CM module holds minimum BUFFER LIMIT REACHED unread CAN frame
· The alarm is cleared when the receive FIFO of the CM module holds less than BUFFER LIMIT REACHED unread CAN frames

Note:
· CANIdList input is ignored by CAN_CTRL FB

[bookmark: _Toc482689698]FCN = 3
Function code 3 empties the receive FIFO on the CM module.

Note:
· CAN_RCV may still hold the old frames that have been uploaded before the FCN 3 command has been processed.

Function code can be requested at any time.

Note:
· LEN_BufferLimit input is ignored by CAN_CTRL FB
· CANIdList input is ignored by CAN_CTRL FB

[bookmark: _Toc482689699]FCN = 5
Function code 5
· resets the CAN controller
· clears Bus Off
· empties the receive FIFO
· empties the transmit FIFO
· clears the acceptance filter
all CAN-IDs are removed from the acceptance filter list
· starts the CAN controller finally

FCN 5 can be requested at any time.

Note:
· LEN_BufferLimit input is ignored by CAN_CTRL FB
· CANIdList input is ignored by CAN_CTRL FB

[bookmark: _Toc467585513][bookmark: _Toc457542602][bookmark: _Toc482689700]CAN_RCV FB
Description
The received CAN frames that have passed the acceptance filter are entered in a receive FIFO on the CM module according their order of reception.
The receive FIFO can hold up to 256 CAN frames.
CAN_RCV uploads the CAN frames from the receive FIFO according their order of reception (first in first out) and copies the uploaded CAN frames to the application specific destination.

Number of uploaded CAN frames / processed CAN_RCV:
· minimum of [number of CAN frames still in the receive FIFO, 19]

General hint:
· It is not possible that several CAN_RCV commands are concurrently processed to the same CM module
· Parallel processed CAN_RCV commands to different CM modules must be processed by different instances of CAN_RCV FB

Implementation hint:
· CAN_RCV must be called sufficient often to avoid that CAN frames are lost due to an overrun of the receive FIFO.
· The flag that controls the REQ input of CAN_RCV
should be set to TRUE
	before any CAN-ID is enabled in acceptance filter
should stay TRUE
	as long as any CAN-ID shall be received
to avoid that messages are lost.

[bookmark: _Toc467585514][bookmark: _Toc457542603][bookmark: _Toc482689701]Parameters of CAN_RCV FB

Input parameters:

	Name
	Data Type
	Description

	REQ
	Bool
	TRUE:
· run CAN_RCV command

FALSE:
· initialize CAN_RCV FB but do not run
an upload of CAN frames
· the CM module is not accessed
· output CAN_STATUS is not
updated
· inout parameter CAN_FRAMES is not touched

	HW_ID
	HW_IO
	hardware identifier of the accessed CM module

see TIA Portal:
 Device configuration
 => CM module
 => General
 => CANopen interface
 => Hardware identifier

InOut parameters:

	Name
	Data Type
	Description

	CAN_FRAMES
	"CANFrames"
	Destination area for the uploaded CAN frames

Valid once the BUSY signal turns FALSE until the next call of the function block
and RET reports “no error”
and NO_FRAMES <> 0

Note: "CANFrames"
· this data type is provided by the “CM CANopen Function Blocks V13 Ver. 2.0.0” library
· "CANFrames" shall not be changed by the customer!
· The layout of "CANFrames" is described by chapter: 4.1

Output parameters:

	Name
	Data Type
	Description

	BUSY
	Bool
	If the function block needs more than one cycle to complete an upload command, this output is set to TRUE.
It stays TRUE until the function block is done, then it is set to FALSE.

BUSY = TRUE indicates that a CAN_RCV command is running

	RET
	UInt
	Error code
see “Error Codes (RET)” of CAN_RCV described in the manual of the CM module

RET = 0 no error

Valid once the BUSY signal turns FALSE until the next call of the function block.

	CAN_STATUS
	Word
	CAN status:
bit coded:
- bit 0 set: Bus off
- bit 1 set: error passive
- bit 2 set: receive queue: full
- bit 3 set: receive queue: half full
 receive FIFO holds minimum 128
 	 unread CAN frames
- bit 4 set: receive queue: warning limit
 reached
 receive FIFO holds minimum
 BUFFER LIMIT REACHED
 	 unread CAN frames
- bit 5 set: receive message lost
- bit 6 set: transmit queue: half full
 transmit FIFO holds minimum
 127 CAN frames that have not
 been transmitted yet 	
- bit 7 set: transmit queue: warning limit
 reached
 maximum 19 free CAN frame
 entries are left in the transmit
 FIFO 	
- bit 8 - 14: not used
- bit 15 set: valid

CAN_STATUS is only valid if bit 15 is set
CAN_STATUS = 16#8000 valid: no error

	NO_FRAMES
	SInt
	Number of uploaded CAN frames

maximum 19 CAN frames are uploaded
per processed CAN_RCV command

Valid once the BUSY signal turns FALSE until the next call of the function block and RET has not reported an error

[bookmark: _Toc467585519][bookmark: _Toc457542608][bookmark: _Toc482689702]CAN_SEND FB
Description
CAN_SEND downloads CAN messages to the CM module to be sent to the CAN network.
Maximum 19 CAN frames can be downloaded per processed CAN_SEND.
The downloaded CAN frames are entered in a transmit FIFO of the CM module according their download order.
The transmit FIFO can hold up to 254 CAN frames.
The CAN frames are transmitted from this transmit FIFO: first in – first out.

Hint
· It is not possible that several CAN_SEND commands are concurrently processed to the same CM module
· Parallel processed CAN_SEND commands to different CM modules must be processed by different instances of CAN_SEND FB

[bookmark: _Toc467585520][bookmark: _Toc457542609][bookmark: _Toc482689703]Parameters of CAN_SEND FB

Input parameters:

	Name
	Data Type
	Description

	HW_ID
	HW_IO
	[bookmark: OLE_LINK3][bookmark: OLE_LINK4]hardware identifier of the accessed CM module

see TIA Portal:
 Device configuration
 => CM module
 => General
 => CANopen interface
 => Hardware identifier

	NO_FRAMES
	USInt
	number of CAN frames to be transferred

valid range:
		0 <= value <= 19

	CAN_FRAMES
	"CANFrames"
	source area where to get the CAN frames to be transferred

Note: "CANFrames"
· this data type is provided by the “CM CANopen Function Blocks V13 Ver. 2.0.0” library
· "CANFrames" shall not be changed by the customer!
· The layout of "CANFrames" is described by chapter: 5.1

InOut parameters:

	Name
	Data Type
	Description

	REQ
	Bool
	TRUE:
· run a download of CAN frames
· hint
· flag is automatically cleared by
CAN_SEND when the command has been processed
· it must not be reset while the
command is running

FALSE:
· initialize CAN_SEND FB but do not run a download of CAN frames
· the CM module is not accessed
· output CAN_STATUS is not
updated
· all input parameters are ignored

Output parameters:

	Name
	Data Type
	Description

	BUSY
	Bool
	If the function block needs more than one cycle to complete the download command, this output is set to TRUE.
It stays TRUE until the function block is done, then it is set to FALSE.

BUSY = TRUE indicates that a CAN_SEND command is running

	
RET
	UInt
	Error code
see “Error Codes (RET)” of CAN_SEND described in the manual of the CM module

RET = 0 no error

additional error codes:
· 16#109C
 => 	NO_FRAMES > 19
· 16#109D
 => 	the CAN-ID 	or the number of 	data bytes of a CAN frame is out
 	of range
· 16#109F
 => 	invalid state of the state
 	machine of CAN_SEND

Valid once the BUSY signal turns FALSE until the next call of the function block

	CAN_STATUS
	Word
	CAN status:
bit coded:
- bit 0 set: Bus off
- bit 1 set: error passive
- bit 2 set: receive queue: full
- bit 3 set: receive queue: half full
 receive FIFO holds minimum 128
 	 unread CAN frames
- bit 4 set: receive queue: warning limit
 reached
 receive FIFO holds minimum
 BUFFER LIMIT REACHED
 	 unread CAN frames
- bit 5 set: receive message lost
- bit 6 set: transmit queue: half full
 transmit FIFO holds minimum
 127 CAN frames that have not
 been transmitted yet 	
- bit 7 set: transmit queue: warning limit
 reached
 maximum 19 free CAN frame
 entries are left in the transmit
 FIFO 	
- bit 8 - 14: not used
- bit 15 set: valid

CAN_STATUS is only valid if bit 15 is set
CAN_STATUS = 16#8000 valid: no error

[bookmark: _Toc457542612]

[bookmark: _Toc482689704]SendReceiveErrorCode FC
This function is called by CAN_CTRL FB, CAN_RCV FB and CAN_SEND FB due to an error.
It generates the error codes that are available at the output RET of CAN_CTRL FB, CAN_RCV FB and CAN_SEND FB.

[bookmark: _Toc482689705]Program group “CM module: transparent CAN”

This program group provides all functionality to run the CM module in transparent CAN mode including the “application” specific functionality:
· sub-folder “Transparent CAN”
contains the transparent CAN FBs and FCs of the “CM CANopen Function Blocks V13 Ver. 2.0.0” library
· sub-folder “Application: CAN-Id specific callback functions”
· folder “Download”
provides the CAN-Id specific callback functions of the demo to transfer CAN frames to the CM module
· folder “Upload”
provides the CAN-Id specific callback functions of the demo to process the uploaded CAN frames
· sub-folder “Application: CAN data”
CAN_Data_DB [DB2] contains the data that are exchanged with the CAN network by the transparent CAN demo
- data transferred by received CAN frames
	see 	“CAN_Data_DB”.InputData
	see	4.3.1
- data transferred by downloaded CAN frames
	see 	“CAN_Data_DB”.OutputData
see 5.2.2.2

· DB to control the functionality of the transparent CAN mode
	Api_CtrlCAN_DB [DB3]

	Copyright IXXAT Automation GmbH
	6
	<Product Name> Manual, Version

	Copyright HMS Technology Center Ravensburg GmbH
	5
	CM CANopen,
Transparent CAN Application, V1.0

image2.png
CM Module

Nopen Demo » PLC_1 [CPU 1215C DUDCRly]

[Topology view [Networkview [} Device view ||

Pl — RO =

§7-1200 rack.

' Properties | " Info_(@)| 2| Diagnostics
[General [10 tags [Systemconstants [Texts |

~ General ——
Projectinformation ware ldentier
Catalog information Hardware identifier
~ CANopen interface f

General Hardware identifier: [271

Module parameters

(<[] [5]

image3.png
CM Module CANopen Demo Tl [CPU 1215C DUDCRIy] » PLC

[@Tags @ Userconstants [@ System constants |
=
PLC tags
Name Dsta ype volue Comment

5 | tocalscs e 263]
9 | Local-0is 0061 o Subhicule 265
10 & Locabruise 1 P 266
8 Localruise 2 P 267
12 (5 LocalCh_caNopen T or 270
13 @ oawein o8_rorcie 1
18 8 LocakA2 A2 1 u_Subhiocule 260
15 & Locabruise 3 P 268
16 & Locabruise 4 P 269
17 & -pon2 o ncersce P
18 & None ip essas
19 G Automaticupdte ip o L
20 |G e ip i
21 |g re2 ip 2
2 |g s ip B
3 (@ re ip B
24 |E rrosseno ip a2768

= ——r

image4.png
» CMmodule: transparent CAN » Api_CtriCAN_DB [DB3]

FF B Reaods 2 =
Api_CtriCAN_DB
Name Data type Startvelue
@~ swic 4]
@s= wHwd word 1640 E
@s woANsws Viord 1640
@s v scrl Struce
@ o+ e Bool TUE
a = N int 1
@ s uilen Bufertimit Uint 3
@+~ awcans: “FCN_1_CANIDList.
a =~ FN_1_CANIDList Array(0.117] of ord
a = FON1_CANDLEstO] Werd 1658101
a = FON1_CANDLESt] Word 1658102
a = FON1_CANDLEst2] Word 1650234
a = FON1_CANDLESt3] Word 16%0
a = FON1_CANIDLst4] Word 1640
a = FON1_CANIDLstS] Werd 1640
a = FON1_CANIDLsts] Word 1640
a = FON1_CANIDLst7] Word 1640
< w

image1.png
HIS

