Error! Use the Home tab to apply Überschrift 1 to the text that you want to appear here.

Revised library

[bookmark: _Toc427636447]
	Application note

	CM CANopen

	Description of the transparent CAN demo

	

HMS Technology Center Ravensburg GmbH
Helmut-Vetter-Straße 2
88213 Ravensburg
Germany

Tel.: +49 751 56146-0
Fax: +49 751 56146-29
Internet: www.hms-networks.de
E-Mail: info-ravensburg@hms-networks.de

	

	

	

	Copyright
Duplication (copying, printing, microfilm or other forms) and the electronic distribution of this document is only allowed with explicit permission of HMS Technology Center Ravensburg GmbH. HMS Technology Center Ravensburg GmbH reserves the right to change technical data without prior announcement. The general business conditions and the regulations of the license agreement do apply. All rights are reserved.

	

	Registered trademarks
All trademarks mentioned in this document and where applicable third party registered are absolutely subject to the conditions of each valid label right and the rights of particular registered proprietor. The absence of identification of a trademark does not automatically mean that it is not protected by trademark law.

	

	Document number: X.XX.XXXX.XXXXX
Version: 1.0

1	Introduction	5
1.1	Restrictions	6
1.2	Synonyms / Abbreviations	7
1.3	Related Documents	8
2	Preparation	9
3	Hardware identifier of the CM CANopen	10
3.1	TIA Portal V13	10
3.2	TIA Portal V14	12
3.3	TIA Portal V15, V15.1	14
4	Overview of the transparent CAN demo	15
4.1	OB 1	15
4.2	Folders	16
5	General hint	19
6	Processing of a CAN_CTRL command	20
6.1	Adaption of the Demo	21
6.1.1	Adaption of Api_CANCtrl_Main FC	21
6.2	Description ProcessCAN_CTRL FC	25
7	Upload / processing of received CAN frames	27
7.1	Adaption of the demo	29
7.1.1	Implementation of a CAN identifier specific callback function	29
7.1.1.1	Coding of the CAN identifier specific callback function	31
7.1.2	Integration of the callback function in Api_ReceiveCANFrames_Main FC	32
7.2	Useful debug information	35
7.2.1	Api_ReceiveCANFrames_MissingCallback FC	35
7.2.2	Api_ReceiveCANFrames_Result FC	36
7.3	Arrangement of uploaded CAN frames in the data area updated by CAN_RCV FB	37
8	Download of CAN frames	38
8.1	Adaption of the demo	41
8.1.1	Implementation of a CAN identifier specific callback function	41
8.1.1.1	Coding of the CAN identifier specific callback function	43
8.1.2	Integration of the callback function in Api_SendCANFrames FC	45
8.1.3	Adaption of Api_SendCANFrames_Request FC	48
8.1.4	Adaption of Api_SendCANFrames_Result FC	50
8.2	Useful debug information	51
8.2.1	Api_SendCANFrames_RequestError FC	51
8.3	Arrangement of the CAN frames in the data area passed to CAN_SEND FB	53
9	CAN Status, Api_CANStatus [FC6]	54
9.1	Adaption of Api_CANStatus FC	57
10	“Get Diagnostic Information”	59
10.1	Adaption of Api_GetDiagnosticInfo FC	60
11	Revised library	61
11.1	Transparent CAN mode	62
11.2	CAN_CTRL FB	63
11.2.1	Parameters of CAN_CTRL FB	64
11.2.2	Function Codes	68
11.2.2.1	FCN = 1	68
11.2.2.2	FCN = 2	71
11.2.2.3	FCN = 3	72
11.2.2.4	FCN = 5	72
11.3	CAN_RCV FB	73
11.3.1	Parameters of CAN_RCV FB	74
11.3.2	Description: InOut parameter CAN_FRAMES	78
11.4	CAN_SEND FB	83
11.4.1	Parameters of CAN_SEND FB	84
11.4.2	Description: Input parameter CAN_FRAMES	88
11.5	SendReceiveErrorCode FC	93
12	Status LEDs	94
12.1	Indicator states and flash rates	95

Content

Content

	Copyright IXXAT Automation GmbH
	4
	Produktname-Handbuch, Version

	Copyright HMS Technology Center Ravensburg GmbH
	3
	CM CANopen,
Transparent CAN Application, V1.0

[bookmark: _Toc27656452]Introduction
This document describes the transparent CAN demo of the CM CANopen that uses the Transparent CAN interface FBs of the “CM CANopen Function Blocks V13 Ver. 2.0.0” library.

The demo explains how to communicate with one CM CANopen running in transparent CAN mode
· to read (upload) received CAN frames
· to write (download) CAN frames to be transmitted to the CAN network
· to process the different FCN function codes of CAN_CTRL
· to process “Get Diagnostic Information”

The demo must be enhanced if the PLC shall communicate with several CM CANopen modules running in transparent CAN mode.

Hint: “CM CANopen Function Blocks V13 Ver. 2.0.0” library
· the function blocks have been revised to provide more performance, more security and more flexibility
· the interface of the function blocks differs from the description in the user manual of the CM CANopen
· the transparent CAN related part of the library is described
by the chapter: Revised library

[bookmark: _Toc27656453]Restrictions

The CM CANopen supports CAN 2.0A (11 bit CAN identifier)
	but it does not support CAN 2.0B (29 bit CAN identifier).

The CM CANopen can lose CAN frames from the CAN network
	if the CAN baudrate is higher than 250kBaud.

[bookmark: _Toc27656454]Synonyms / Abbreviations

	Name / Abbreviation
	Description

	CAN-ID
	CAN identifier

	RTR
	Remote Transmission Request

The CAN specification allows that the transmission of a CAN frame can be requested by another module.
An RTR CAN frame
· does not carry data
· requests the transmission of a CAN frame
· with the CAN-ID of the RTR frame
· with minimum number of data bytes that are indicated by the RTR frame

hint:
· a CAN device can but it must not support an RTR request

	RTR info
	Information if the CAN frame is a standard or RTR CAN frame

	DLC
	Data Length Code
· standart CAN frame (no RTR request):
	number of data bytes transferred by the 	CAN frame
	0 data byte is a valid value
· RTR request:
	the requested CAN frame should	transfer the indicated number of data 	bytes

	MSB
	Most Significant Byte
e.g.:
 	16#1234 => MSB = 16#12

	LSB
	Least Significant Byte
e.g.:
 	16#1234 => LSB = 16#34

[bookmark: _Toc27656455]Related Documents

	Document name
	Author

	CM CANopen - User Manual.pdf
Rev 1.00
	HMS

	
	

[bookmark: _Toc27656456]Preparation
The customer must know
· what CAN frames shall be received
· the CAN identifier and the contents
 	of each CAN frame that shall be received
· what CAN frames shall be transmitted
· the CAN identifier and the contents
 	of each CAN frame that shall be sent

Note:
· CAN frames can be added / removed at any time

[bookmark: _Ref492644880][bookmark: _Toc493576113][bookmark: _Toc27656457]Hardware identifier of the CM CANopen
The hardware address / hardware identifier of the CM CANopen module is needed by the HW_ID input of
· the CAN_CTRL FB
· the CAN_RCV FB
· the CAN_SEND FB
· the used RDREC instance to process “Get Diagnostic Information”

[bookmark: _Toc13045024][bookmark: _Toc27656458]TIA Portal V13
The hardware identifier of the CM CANopen module is provided by the hardware configuration of the CM CANopen module.

[image:]

Alternatively:
TIA Portal V13 also provides a system constant that is provided by:
	hardware configuration of the CM CANopen module / System constants

[image:]

[bookmark: _Toc13045025][bookmark: _Toc27656459]TIA Portal V14
The hardware identifier of the CM CANopen module is provided by the hardware configuration of the CM CANopen module.

[image:]

Alternatively:
TIA Portal V14 also provides a system constant that is provided by:
	PLC tags / Show all tags / System constants

[image:]

“Local~CM_CANopen_1” is the hardware identifier of the CM module with the name:
	CM CANopen_1
Its data type must be Port.

[bookmark: _Toc13045026][bookmark: _Toc27656460]TIA Portal V15, V15.1
Siemens has removed the hardware identifier of the CM CANopen module from the hardware configuration of the CM module.
The hardware identifier of the CM CANopen module can be found in:
	PLC tags / Show all tags / System constants

Device configuration:
[image:]

Hardware Id of the CM module: CM CANopen_1

[image:]

“Local~CM_CANopen_1” is the hardware identifier of the CM module with the name:
	CM CANopen_1
Its data type must be Port.

[bookmark: _Toc27656461]Overview of the transparent CAN demo

[bookmark: _Toc27656462]OB 1

Description of OB 1:
Network 1:
		main function of the processing of CAN_CTRL commands

Network 2:
		main function of the upload and processing of received
		CAN frames

Network 3:
		main function of the transmission of CAN frames

Network 4:
		example of the processing of “Get Diagnostic information”

[bookmark: _Toc27656463]Folders

Mandatory folders that provide the functionality of the transparent CAN mode:

· Program blocks: Transparent CAN Library
· this folder provides the transparent CAN FBs / FC of the library
· hint: SendReceiveErrorCode FC
· this function is called by
 	CAN_CTRL FB / CAN_RCV FB and CAN_SEND FB
· it generates the error codes
	
· PLC data types: Transparent CAN Library
· this folder provides the data types that are required by the transparent CAN FBs

[bookmark: _Toc482598237]Folders of the transparent CAN demo:

· Program blocks: Api_CANStatus FC
· this function informs the application about the current CAN status
· it is called by the demo functions
	Api_CANCtrl_Main FC
	Api_ReceiveCANFrames_Main FC
	Api_SendCANFrames FC
when the CAN status has been received from the CM CANopen

· Program blocks: Api_CtrlCAN_DB
· this DB provides the variables to control / run the demo functions
Api_CANStatus FC
	
Api_CANCtrl_Main FC
	
Api_ReceiveCANFrames_Main FC

Api_SendCANFrames_Main FC
Api_SendCANFrames FC
Api_SendCANFrames_Request FC
Api_SendCANFrames_RequestError FC
Api_SendCANFrames_Result FC

Api_GetDiagnosticInfo FC

· Program blocks: CAN Ctrl
· this folder provides the demo implementation of the processing of CAN_CTRL commands

· Program blocks: Receive CAN Frames
· this folder provides the demo implementation of the upload and processing of received CAN frames

· Program blocks: Send CAN Frames
· this folder provides the demo implementation of the management of the transmission of CAN frames to the CM CANopen

· Program blocks: Get Diagnostic Information
· this folder provides the demo implementation of “Get Diagnostic Information”

· Program blocks: Application: CAN-Id specific callback functions
· this folder contains the CAN identifier specific callback functions of the demo
· the processing of received CAN frames and the transmission of CAN frames is based on CAN identifier specific callback functions
· see:
	Api_ReceiveCANFrames_Main FC
 	Api_SendCANFrames FC

· Program blocks: Application: CAN data
· this folder contains the DB that provides the data that are exchanged by the CAN frames of the demo
· see also folder:
 	Application: CAN-Id specific callback functions

· PLC data types: Transparent CAN demo
· this folder provides the data type of the CAN identifier list that is used / required by
	Api_SendCANFrames_Request FC
	Api_SendCANFrames FC

· PLC tags: Show all tags / User constants
· states of the state machine of Api_CANCtrl_Main FC
	cInit
	cConfigAcceptanceFilter_Request, 	cConfigAcceptanceFilter_Result
	cConfigBufferLimitReached_Request
	cConfigBufferLimitReached_Result
	cReactCANStatusEvent
	cReactCANStatusEvent_Result
	cResetCANController_Request
	cResetCANController_Result

[bookmark: _Toc27656464][bookmark: _Ref459647744]General hint
Hint: CAN_CTRL
· the acceptance filter is cleared (CAN frames are not received)
	after power on
 	reset CAN controller (FCN 5) command

· only one command can be executed on one CM CANopen at the same time
· parallel processed commands to different CM CANopen need different instances of CAN_CTRL FB

Hint: CAN_RCV
· only one command can be executed on one CM CANopen at the same time
· parallel processed commands to different CM CANopen need different instances of CAN_RCV FB

Hint: CAN_SEND
· only one command can be executed on one CM CANopen at the same time
· parallel processed commands to different CM CANopen need different instances of CAN_SEND FB

Hint: demo
· the demo provides the functionality
	to communicate with one CM CANopen
· the demo has not been implemented with FBs
· FCs are easier to understand

[bookmark: _Toc27656465]Processing of a CAN_CTRL command
The demo CAN_CTRL application: Api_CANCtrl_Main [FC6]
· enables the reception of all CAN-IDs
	after power on / Reset CAN controller (FCN 5)
· sets the value of Buffer Limit reached to 50
	after power on / Reset CAN controller (FCN 5)
· processes Reset CAN controller (FCN 5) when bus off
· clears the receive buffer when a CAN frame has been lost

The processing of a CAN_CTRL command by the demo:
· Api_CAN_Ctrl [FC15]
· the processing of the CAN_CTRL commands is controlled by the state machine of Api_CAN_Ctrl [FC15]
· request of a CAN_CTRL command
· check of the status / result of the processed command
· informs the application about the read CAN status
by calling
	Api_CANStatus [FC11]

Hint: ProcessCAN_CTRL FC
· the demo provides an alternative processing of CAN_CTRL commands
· hint:
	customer`s application can use
	 	either Api_CANCtrl_Main [FC6]
		or ProcessCAN_CTRL FC [FC2]
but not both at the same time to access the same CM CANopen

· ProcessCAN_CTRL FC
· processes the requested CAN_CTRL command
· informs the application about the read CAN status by calling
	Api_CANStatus [FC11]
· customer`s application is responsible for the management of CAN_CTRL commands

[bookmark: _Toc27656466]Adaption of the Demo

[bookmark: _Toc27656467]Adaption of Api_CANCtrl_Main FC

Api_CANCtrl_Main FC
· requests and processes after power on / Reset CAN controller (FCN 5) command
· function code 1: Set acceptance filter
· state: "cConfigAcceptanceFilter_Request"
	request the processing of an FCN 1 command
· state: "cConfigAcceptanceFilter_Result"
	checks the result of the processed command

· function code 2: Set number of frames to store before warning
			(BUFFER LIMIT REACHED)
· state: "cConfigBufferLimitReached_Request"
	request the processing of an FCN 2 command
· state: "cConfigBufferLimitReached_Result"
	checks the result of the processed command

· checks the CAN status and reacts to CAN status events
· bus off:
· is checked first
	see line 167 – 186
· Reset CAN Controller (FCN 5) is processed by
· state: "cResetCANController_Request"
	request the processing of an FCN 5 command
· state: "cResetCANController_Result"
	checks the result of the processed command

· other CAN status events:
· state: "cReactCANStatusEvent"
	check if any action is necessary

	this state is entered
		when the configuration (FCN 1 / 2)
	has been processed

· state: "cReactCANStatusEvent_Result"
	checks the result of the requested command

Adaption of Api_CANCtrl_Main FC:

· the acceptance filter shall not be configured

· state: “cInit”

· adaption of the demo:

replace line 199 by
 "Api_CtrlCAN_DB".sApi.sCAN_CTRL := "cReactCANStatusEvent";

· FCN 1 Set acceptance filter

· state: "cConfigAcceptanceFilter_Request"

· requests the processing of an FCN 1 command

· please read the comment:
	general comment:	 		 see line 205 - 275
	examples: 		 		 see line 277 - 312
	hint: receive all CAN identifier:	 see line 314 – 324

· adaption of the demo:
 	 see line 333 - 337

· state: "cConfigAcceptanceFilter_Result"

· checks the result of the processed FCN 1 command
· demo:
· success:
	next action: process FCN 2
· failure:
	repeat the requested command

· adaption of the demo:
· success:
	see line 355 - 369
· failure:
	line 381

· FCN 2 Set number of frames to store before warning

· state: "cConfigBufferLimitReached_Request"

· requests the processing of an FCN 2 command

· please read the comment:
				see line 389 - 408

· adaption of the demo:
 	see line 418

· state: "cConfigBufferLimitReached_Result"

· checks the result of the processed FCN 1 command
· demo:
· success:
	next action: check CAN controller status
· failure:
	repeat the requested command

· adaption of the demo:
· success:
	no action
· failure:
	line 446
·

· FCN 3 Clear RX buffer

· Api_CANCtrl_Main FC
· checks in the state
	“cReactCANStatusEvent“
if a FCN 3 command shall be processed

· demo:
	requests the processing of an FCN 3 command
	when the CM CANopen has lost a received message
		see line 598 - 627

· adaption of the demo:
	line 621 – 627

· FCN 5 Reset CAN controller

· hint: Reset CAN controller command
· it stops the CAN controller
· it clears the acceptance filter
· it clears the receive FIFO
· it clears the transmit FIFO
· it starts the CAN controller

· Api_CANCtrl_Main FC
· checks if bus off and reacts to bus off
	see line 167 - 186

· FCN 5 is processed by the states:
· "cResetCANController_Request"
	see line 666 - 685
· "cResetCANController_Result"
	see line 691 – 722

success:
	next state: "cInit"
failure:
	repeat the command

[bookmark: _Toc27656468]Description ProcessCAN_CTRL FC

ProcessCAN_CTRL FC processes the parameterized CAN_CTRL command.
It additionally informs the application about the read CAN status by calling
	Api_CANStatus [FC11].

Hint:
· Api_CANCtrl_Main [FC6] and ProcessCAN_CTRL FC cannot run at the same time on the same CM CANopen

Input parameters:

	Name
	Data Type
	Description

	HW_ID
	HW_IO
	hardware identifier of the accessed CM CANopen in TIA Portal

	FCN
	Int
	function code of the CAN_CTRL cmd

	LEN_BufferLimit
	UInt
	FCN = 1:
· number of CAN Ids to be transferred to the CM CANopen
 	0 <= value <= 118
FCN = 2:
· value of BUFFER LIMIT REACHED
 	0 < value <= 256
FCN = 3 / 5:
· parameter is ignored

	CANIdList
	"FCN_1_CANIDList"
	FCN = 1:
· CAN identifier list
 contains the CAN identifiers
 	to be configured
 in the acceptance filter

· it is ignored for
	LEN_BufferLimit = 0

· the CAN identifier list is described by chapter: FCN = 1
FCN = 2 / 3 / 5:
· parameter is ignored

Output parameters:

	Name
	Data Type
	Description

	BUSY
	Bool
	this output is / stays true
	until the requested command is done then it is set to FALSE

BUSY = TRUE indicates that a command is running

	RET
	UInt
	error code:
see “Error Codes (RET)” of CAN_CTRL described in the manual of the CM CANopen

RET = 0 no error

additional error codes:
· 16#109C
- FCN = 1
 => 	LEN_BufferLimit > 118
· 16#109E
- FCN = 1
 => 	minimum one CAN-ID is out of
 	range
- FCN = 2
 => 	LEN_BufferLimit: out of range
		either 0 or > 256
· 16#109F
invalid state of the state machine of
CAN_CTRL FB

valid once
	when the BUSY signal turns FALSE until the next call of the function block

[bookmark: _Ref459647602][bookmark: _Ref459647639][bookmark: _Toc27656469]Upload / processing of received CAN frames
The upload and processing of CAN frames is processed by
 	Api_ReceiveCANFrames_Main [FC3].

Processing of the uploaded CAN frames by the demo:
· the processing of uploaded CAN frames
	is based on CAN-ID specific callback functions

· each CAN identifier
	that shall be received
needs its CAN identifier specific callback function

· each CAN-ID specific callback function must know
· does the CAN frame transfers data or is it an RTR request
· an RTR CAN frame
	requests the transmission of the CAN frame
that uses the same CAN identifier as the RTR CAN frame
· the layout of the data field of the CAN frame
· what data are transferred by the CAN frame
· what variables must be updated
· what specific actions are to be taken

· advantage of the use of CAN identifier specific callback functions
· the callback function must be coded once
· the adaptation to later changes is completely unproblematic
only the callback needs to be adjusted

· the callback function must be integrated once
	in Api_ReceiveCANFrames_Main [FC3]

· Api_ReceiveCANFrames_Main [FC3]
· it processes the transfer of received CAN frames from the CM CANopen to the PLC

· it calls the corresponding callback function of the uploaded CAN frame

· it informs the application about each missing callback by calling
	Api_ReceiveCANFrames_MissingCallback [FC12]

· it informs the application about the result of the processed CAN_RCV command
	Api_ReceiveCANFrames_Result [FC13]

· it informs the application about the read CAN status by calling
	Api_CANStatus [FC11]

· this function must not be adjusted
	except the integration of the callback function(s)

[bookmark: _Ref480870927]

[bookmark: _Toc27656470]Adaption of the demo

Each CAN identifier that shall be received needs its CAN identifier specific callback function:
· cases:
· CAN frame transfers data
· callback function processes the received data
· RTR request
· callback function requests the transmission of the corresponding CAN frame

The adaption to the application consists of
1. the implementation of the CAN-ID specific call back function(s)

2. the integration of the CAN-ID specific callback function(s)
	in Api_ReceiveCANFrames_Main FC

The adaption is explained by an example:
· CAN frames with the CAN identifier 123h shall be received / processed

[bookmark: _Toc27656471]Implementation of a CAN identifier specific callback function

The procedure described below must be repeated for each CAN identifier that shall be received.

Procedure:
1. make a copy of Example_GetDataCANId_101h FC

hint: Example_GetDataCANId_101h FC
 => this function covers all types of CAN frames
 => CAN frames that transfer data
 => 0 - 8 data bytes
 => RTR CAN frames

[image:]

2. rename the copy:
	e.g.: GetDataCANId_123h

[image:]

3. change the FC number of the new callback function
=> Properties
	=> General
		=> manual
			=> select a FC number

[image:]

[image:]

4. coding of the callback function

hint:
	the integration of the new callback function is very easy
		if the input parameters are not changed

the coding is described by the chapter:
 	Coding of the CAN identifier specific callback function

[bookmark: _Ref17197690][bookmark: _Toc27656472]Coding of the CAN identifier specific callback function

The customer must know
· does the CAN frame transfers data or is it expected to be an RTR request
· an RTR CAN frame requests the transmission of the CAN frame that uses the same CAN identifier as the RTR CAN frame
· the minimum number of transferred data bytes
· the layout of the data field
· the meaning of the data bytes
· which variables have to be updated
· the related actions

Adaption of the callback:
· please read the comments of the callback
 	before starting with the adaption

· regular CAN frame or RTR request
· line 58 – 104:
=> must be adapted to the individual callback function
 	by the customer
· input bRTR:
· #bRTR = 0 regular CAN frame / no RTR request
· #bRTR <> 0 RTR request / no regular CAN frame

· check of the number of data bytes
· line 119 – 130:
=> must be adapted to the individual callback function
	by the customer
· input bDataSize:
· #bRTR = 0 number of data bytes
· #bRTR <> 0 number of data bytes
			of the triggered CAN frame

· update the data of the application / execute the requested action
· condition #bRTR = 0
· line 133 – 156:
=> must be adapted to the individual callback function
	by the customer
· remove the update of the data of the demo
=> line 159 - 172

[bookmark: _Toc27656473]Integration of the callback function
	in Api_ReceiveCANFrames_Main FC

Procedure:
1. make a copy
 of the integration of Example_GetDataCANId_101h FC

copy line 242 – 253

[image:]

2. adapt the name of Example_GetDataCANId_101h FC
 to the name of the callback that shall be integrated:

example: GetDataCANId_123h

see line 257

[image:]

3. adapt the CAN identifier case of the added callback function

	this completes the integration of the callback function

example: GetDataCANId_123h

GetDataCANId_123h is the callback function
	that processes the reception of a CAN frame
		with identifier 123h

see line 255

[image:]

[bookmark: _Toc27656474]Useful debug information

The transparent CAN demo also provides some callback functions that are useful especially during development.

[bookmark: _Toc27656475]Api_ReceiveCANFrames_MissingCallback FC

This function is called by Api_ReceiveCANFrames_Main FC
	whenever an uploaded received CAN frame could not be processed 			because its callback function is missing.

This function
· is application specific
· must be coded by the customer

input parameter CAN_Identifier:
· CAN identifier of the uploaded CAN frame that callback function is missing

Possible reasons:
· it has been forgotten to integrate the callback function in
	Api_ReceiveCANFrames_Main FC
· its CAN identifier case is wrong
· the corresponding callback
	is assigned with a wrong CAN identifier
in Api_ReceiveCANFrames_Main FC
· the received CAN frame shall not be processed
· hint:
	it is recommended to remove the CAN identifier
		from the acceptance filter
	to avoid an overrun of the receive FIFO
		caused by CAN frames
	that are not relevant

[bookmark: _Toc27656476]Api_ReceiveCANFrames_Result FC

This function
· is called by Api_ReceiveCANFrames_Main FC
	whenever CAN_RCV FB has been processed
· informs the application about the result that is reported by CAN_RCV FB

input uiResult:
· value of output RET of CAN_RCV FB

This function provides the opportunity to the customer
· to analyse the result
· to react to the result
	=> to control the process

This function
· is application specific
· must be coded by the customer

Hint: CAN status "Api_CtrlCAN_DB".wCANStatus
· bus off is one of the possible reasons for failure of CAN_RCV FB

[bookmark: _Toc27656477]Arrangement of uploaded CAN frames in the data area updated by CAN_RCV FB

The arrangement of uploaded CAN frames in the data area is described by the
chapter: 	
		Description: InOut parameter CAN_FRAMES

This knowledge is necessary
· if the customer does not use the demo function
	Api_ReceiveCANFrames_Main FC

· if the customer directly accesses CAN_RCV FB

[bookmark: _Toc46796492]	
[bookmark: _Ref459647658][bookmark: _Toc27656478]Download of CAN frames
The transfer of CAN frames to the CM CANopen is processed by
 	Api_SendCANFrames_Main [FC15].

Transfer of CAN frames to the CM CANopen by the demo:
· the transfer of CAN frames
	is based on CAN-ID specific callback functions

· each CAN identifier
	that shall be transmitted
needs its CAN identifier specific callback function

· each CAN-ID specific callback function must know
· does the CAN frame transfers data or is it an RTR request
· an RTR CAN frame
	requests the transmission of the CAN frame
that uses the same CAN identifier as the RTR CAN frame
· the layout of the data field of the CAN frame
· what data are transferred by the CAN frame
· where to get the data
· what specific actions are to be taken

· advantage of the use of CAN identifier specific callback functions
· the callback function must be coded once
· the adaptation to later changes is completely unproblematic
				only the callback needs to be adjusted

· the callback function must be integrated once
	in Api_SendCANFrames [FC4]

· Api_SendCANFrames [FC4]
· it processes the initialization of the requested command
· it calls the corresponding callback function of the CAN frame that shall be transmitted

· it informs the application about the errors detected during initialization of the requested command by calling
	Api_SendCANFrames_RequestError [FC14]

· it processes the transfer of the requested CAN frames to the
CM CANopen

· it informs the calling function application about the result of the processed command

· it informs the application about the read CAN status by calling
	Api_CANStatus [FC11]

· this function must not be adjusted
	except the integration of the callback function(s)

· Api_SendCANFrames_Request [FC16]
· this function informs the calling function
· if CAN frames shall be sent
· how many CAN frames shall be sent
· what CAN frames shall be sent
· about the order of the CAN frames to be sent

· this function is application specific
	it must be coded by the customer

· Api_SendCANFrames_Main [FC15]
· it controls the transfer of CAN frames from the PLC to the CM CANopen

· it calls in its idle state
	Api_SendCANFrames_Request [FC16]
that informs the calling function
	if and which CAN frames shall be transmitted

· it calls in its busy state
	Api_SendCANFrames [FC3]
that processes the requested download to the CM CANopen

· it informs the application about the result of the processed command by calling
	Api_SendCANFrames_Result [FC18]

· this function must not be adjusted

[bookmark: _Toc27656479]Adaption of the demo

Each CAN identifier that shall be transmitted needs its CAN identifier specific callback function:

The adaption to the application consists of
1. the implementation of the CAN-ID specific call back function(s)

2. the integration of the CAN-ID specific callback function(s)
	in Api_SendCANFrames FC

3. the coding of the application specific function
	Api_SendCANFrames_Request FC

The adaption is explained by an example:
· CAN frames with the CAN identifier 234h shall be transmitted

[bookmark: _Toc27656480]Implementation of a CAN identifier specific callback function

The procedure described below must be repeated for each CAN identifier that shall be transmitted.

Procedure:
1. make a copy of Example_EnterCANFrame_CANId_201h FC

hint: Example_EnterCANFrame_CANId_201h FC
 => this function covers all types of CAN frames
 => CAN frames that transfer data
 => 0 - 8 data bytes
 => RTR CAN frames

[image:]

2. rename the copy:
	e.g.: EnterCANFrame_CANId_234h

[image:]

3. change the FC number of the new callback function
=> Properties
	=> General
		=> manual
			=> select a FC number

[image:]

[image:]

4. coding of the callback function

hint:
	the integration of the new callback function is very easy
		if the input parameters are not changed

the coding is described by the chapter:
	Coding of the CAN identifier specific callback function

[bookmark: _Ref17197959][bookmark: _Toc27656481]Coding of the CAN identifier specific callback function

The customer must know
· does the CAN frame transfers data or is it used as an RTR request
· the number of transferred data bytes
· the layout of the data field
· the layout of the data field of the CAN frame
· what data are transferred by the CAN frame
· where to get the data

Adaption of the callback:
· please read the comments of the callback
 	before starting with the adaption

· enter the CAN identifier of the CAN frame
· line 44 – 65

· regular CAN frame or RTR request
· line 67 – 82:
=> must be adapted to the individual callback function
	by the customer
· output RTR:
· #RTR = 0 	 regular CAN frame / no RTR request
· #TR <> 0 	 RTR request / no regular CAN frame

· number of data bytes
· line 84 – 122:
=> must be adapted to the individual callback function
	by the customer
· output DataSize:
· #RTR = 0 number of data bytes
· #RTR <> 0 number of data bytes
			of the triggered CAN frame

· update the transferred data
· condition #RTR = 0
· line 125 – 154:
=> must be adapted to the individual callback function
	by the customer
· remove the update of the data of the demo
=> line 156 – 168

[bookmark: _Toc27656482]Integration of the callback function
	in Api_SendCANFrames FC

Procedure:
1. make a copy
 of the integration of Example_EnterCANFrame_CANId_201h FC

copy line 260 – 280

[image:]

2. adapt the name of Example_EnterCANFrame_CANId_201h FC
 	to the name of the callback that shall be integrated:

example: EnterCANFrame_CANId_234h

see line 279

[image:]

3. adapt the CAN identifier case of the added callback function

	this completes the integration of the callback function

example: EnterCANFrame_CANId_234h

EnterCANFrame_CANId_234h is the callback function
	that processes the transmission of a CAN frame
		with identifier 234h

see line 276

[image:]

[bookmark: _Toc27656483]Adaption of Api_SendCANFrames_Request FC

Function is called by
	Api_SendCANFrames_Main FC
when there is no running transfer of CAN frames to the CM CANopen
	=> CAN_SEND FB is not occupied by a running command

Api_SendCANFrames_Request FC informs the calling function
· if CAN frames shall be sent
· how many CAN frames shall be sent
· what CAN frames shall be sent
· about the order of the CAN frames to be sent

This function
· is application specific
· must be coded by the customer!

Please read the comments before starting the coding!

Parameters:
· output parameter: NbrCANFrames:
· valid values: 0 <= NbrCANFrames <= 19

· NbrCANFrames = 0
· no CAN frame is to be sent
· CAN_SEND FB does not communicate with the
CM CANopen

· 1 <= NbrCANFrames <= 19
· NbrCANFrames CAN frames shall be sent

· inout parameter: SendList
· list of the CAN identifies that CAN frames shall be transmitted
· data type: "Send_CANIdList"
	see PLC data types / Transparent CAN Demo

Hint:
· case: output parameter NbrCANFrames = 0
· inout parameter SendList
	is ignored by the calling function
		must not be updated

· case: output parameter NbrCANFrames > 0
· the identifiers of the CAN frames that shall be sent
	are entered in the CAN identifier list
 		according their order of transmission

· first transmitted: #SendList.CANIdList[0]
…
last transmitted: #SendList.CANIdList[#NbrCANFrames - 1]
· hint:
	each entry
		#SendList.CANIdList[0]
 		…
		#SendList.CANIdList[#NbrCANFrames - 1]
	must be initialized

Adaption of Api_SendCANFrames_Request FC:
· the transmission of CAN frames
	additionally depends of the current CAN status

line 86 – 152
· comment: CAN status
	line 86 - 134
· bus off
	line 137 – 141
· transmit queue: warning limit reached
	line 144 – 152

· no CAN frame shall be transmitted
· line 219
	#NbrCANFrames := 0;

· CAN frame(s) shall be transmitted
· the comments of line 162 – 197, 205 – 211 describe
	what needs to be done
so that certain CAN messages are transmitted in a specific order
· line 219 must
	be coded by the customer

[bookmark: _Toc27656484]Adaption of Api_SendCANFrames_Result FC

This function
· is called by Api_SendCANFrames_Main FC
	when the requested transfer of CAN frames has been processed
· informs the application about the result of the processed transfer

Input uiResult:
· value of output RET of CAN_SEND FB
· see manual of the CM CANopen
	chapter: 	8.2.1 CAN_SEND
			 => output RET

· additional error codes:
· missing callback of a CAN frame that shall be transferred
	uiResult = 16#109A
· number of CAN frames is out of range
	uiResult = 16#109C

This function provides the opportunity to the customer
· to analyse the result
· to react to the result
· to reliably control the process
· to manage the transmission of CAN frames
· to control Api_SendCANFrames_Request FC

· parameters of the processed command
· number of CAN frames:
	"Api_CtrlCAN_DB".sApi.sSend.usiNbrCANFrames
· CAN identifier send list:
	"Api_CtrlCAN_DB".sApi.sSend.SendList

This function
· is application specific
· must be coded by the customer

Hint: CAN status "Api_CtrlCAN_DB".wCANStatus
· bus off is one of the possible reasons for failure of CAN_SEND FB

[bookmark: _Toc27656485]Useful debug information

The transparent CAN demo also provides some callback functions that are useful especially during development.

[bookmark: _Toc27656486]Api_SendCANFrames_RequestError FC

This function is called by Api_SendCANFrames FC
	when Api_SendCANFrames FC has detected an error
 		while initializing the requested CAN_SEND command

Function must be coded by the customer.

Indicated errors:
· number of CAN frames is out of range
· missing callback function of a CAN frame
· each missing callback of the requested command is indicated
	by an individual call of Api_SendCANFrames FC

Hint:
· the requested transfer is not processed
· the abort of the requested transfer is reported by the call of 	Api_SendCANFrames_Result FC

The inputs of Api_SendCANFrames_RequestError FC
· inform about
· the error type	 input ErrorType
· the “error” value 	 input Value

· input ErrorType:
· ErrorType = 1 number of CAN frames is out of range
· ErrorType = 2 missing callback function

· input Value:
· ErrorType = 1:
· Value = number of CAN frames that should be sent
· #ErrorType = 2
· Value = CAN identifier of the CAN frame
 	that callback is missing

Number of CAN frames is out of range:
· input Value = number of CAN frames to be transmitted

· this error is caused by
	output NbrCANFrames
of Api_SendCANFrames_Request FC

· action:
	check the initialization of
		output NbrCANFrames
	by Api_SendCANFrames_Request FC

Missing callback of a CAN frame:
· input Value = CAN identifier that callback is missing

· possible reasons:
· it has been forgotten to integrate the callback function in
	Api_SendCANFrames FC

· bad implementation of
	Api_SendCANFrames_Request FC

· action:
· check the CAN identifier
· is it a legal / supported CAN identifier?

· it is a legal / supported CAN identifier
· integrate the missing callback in
	Api_SendCANFrames FC

· it is not a legal CAN identifier
· check the initialization of
	output SendList
	output NbrCANFrames
by Api_SendCANFrames_Request FC

· hint:
each entry
	#SendList.CANIdList[0 … NbrCANFrames -1]
must be initialized
	by Api_SendCANFrames_Request FC
otherwise
	its value is not defined / is random
[bookmark: _Ref480870854][bookmark: _Ref480870901]

[bookmark: _Toc27656487]Arrangement of the CAN frames in the data area passed to CAN_SEND FB

The arrangement of the CAN frames that shall be transmitted in the data area is described by the chapter:
	Description: Input parameter CAN_FRAMES

This knowledge is necessary
· if the customer does not use the demo function
	Api_SendCANFrames FC
· if the customer directly accesses CAN_SEND FB

[bookmark: _Ref460844266]

[bookmark: _Toc27656488]CAN Status, Api_CANStatus [FC6]

The output CAN_STATUS
	of CAN_CTRL FB, CAN_RCV FB and CAN_SEND FB
inform about the current CAN status of the CM module
	when the requested command has been processed
	 	and the CAN status is available.

Api_CANStatus FC is called by
	Api_CANCtrl_Main FC
	Api_ReceiveCANFrames_Main FC
	Api_SendCANFrames FC
when the CAN status is available:
· input CANStatus of Api_CANStatus FC provides the read CAN status

Description of the input CANStatus:
· CANStatus is bit coded

· description of the single bits:
· bit 0: set bus off
· bit 1: set error passive
· bit 2: set receive queue: full
		 receive queue holds 256 unread CAN frames	
· bit 3: set receive queue: half full
		 receive queue holds
			minimum 128 unread CAN frames
· bit 4: set receive queue: warning limit reached
		 receive queue holds
			minimum “BUFFER LIMIT REACHED”
				unread CAN frames
· bit 5: set receive message lost
		 minimum one received message is lost
· bit 6: set transmit queue: half full
		 transmit queue holds
			minimum 127 CAN frames that
 				have not been transmitted yet
· bit 7: set transmit queue: warning limit reached
		 maximum 19 free CAN frame entries
			are left in the transmit queue
· bit 8 - 15:	reserved / not used

Reason of / reaction to a CAN status event:
· bus off:
· reason:
· short cut
· noise
· wrong mounting of the CAN cable
· CM CANopen is running with a wrong CAN baudrate
· another CAN device runs with a wrong CAN baudrate
· reaction:
· check Baudrate in the device configuration
 	of the CM CANopen in TIA Portal
· download the correct Baudrate
· check the mounting of the CAN cable
· check if all connected devices
 	run with the correct CAN baudrate
· noise:
· use a standard CAN cable
=> twisted pair
=> the shield should be grounded at one side

· error passive
· note:
· CAN frames can be received / transmitted
· the CAN controller is not allowed to destroy a CAN frame
	if it detects an error
· reason:
· noise
· disconnected
· transient state before the CAN controller enters bus off

· reaction:
· check if the CM CANopen is connected
· check if minimum one device is connected
· noise:
· use a standard CAN cable
=> twisted pair
=> the shield should be grounded at one side

· receive queue: full, half full, warning limit reached
· reason:
· CAN identifiers are accepted by the acceptance filter
	although they are not processed by the application
· the frequency of the received CAN frames is (too) high
	the average CAN busload should not exceed 55%
· warning limit reached:
	configured value of BUFFER LIMIT REACHED
 	is too small
· reaction:
· configure the acceptance filter
	so that only the CAN identifiers
		that shall be received
	are received
· call
	CAN_RCV FB
several times per OB1:
e.g.:
	call it at the beginning and at the end of OB1

demo:
	call Api_ReceiveCANFrames_Main FC
		several times

· receive message lost
· reason:
· overrun of the receive FIFO
· overrun of the CAN controller
	the CAN controller receives a new CAN frame
	but the previous received CAN frame has not been 	processed by the CAN controller, yet
hint:
	this event is independent
 		of the level of the receive FIFO
	this event can only occur
		when the CAN baudrate is higher
 			than 250kBaud
· reaction:
· see above:
	receive queue: full, half full, warning limit reached
· check if the receive queue is full
· the reaction depends of the application:
e.g.:
	process the CAN_CTRL command:
		Clear RX buffer (FCN 3)

· transmit queue: half full, warning limit reached
· reason:
· disconnected
· the average CAN busload is too high
	the average CAN busload should not exceed 55%
· reaction:
· check if the CM CANopen is connected
· check if minimum one device is connected
· hint: warning limit reached
 	CAN frames should not be sent
	to avoid an overrun of the transmit FIFO

[bookmark: _Toc27656489]Adaption of Api_CANStatus FC

This function
· informs the application about the CAN status
 that is reported by output CAN_STATUS of
 	CAN_CTRL FB
	CAN_RCV FB
	CAN_SEND FB
· is called by
	Api_CANCtrl_Main FC
	Api_ReceiveCANFrames_Main FC
	Api_SendCANFrames FC
when a command has been processed
	and the CAN status is available

input CANStatus:
· value of output CAN_STATUS reported by
	CAN_CTRL FB
	CAN_RCV FB
	CAN_SEND FB

This function provides the opportunity to the customer
· to analyse the result
· to react to the result
	=> to control the process

This function
· is application specific
· must be coded by the customer

Description of Api_CANStatus FC:
· function updates the global variable
	"Api_CtrlCAN_DB".wCANStatus
		see line 150

· "Api_CtrlCAN_DB".wCANStatus
· provides the latest read CAN status for the complete application

· is used by the demo functions
· Api_CANCtrl_Main FC

· Api_ReceiveCANFrames_Result FC

· Api_SendCANFrames_Request FC
Api_SendCANFrames_Result FC

· hint:
· the reaction to an exception must be processed by a function
	that controls the complete application
to avoid conflicts / inconsistencies
· demo:
· Api_CANCtrl_Main FC
· Api_ReceiveCANFrames_Main FC
· Api_SendCANFrames_Main FC
Api_SendCANFrames_Request FC

· hint:
· read the comments of Api_CANStatus FC before start coding

[bookmark: _Toc27656490] “Get Diagnostic Information”

Note:
· the information that is received by “Get Diagnostic Information”
	is also provided by
		the output CAN_STATUS of
			CAN_CTRL FB
 			CAN_RCV FB
			CAN_SEND FB
· Get Diagnostic Information is provided by the demo to be complete

Api_GetDiagnosticInfo [FC7]
· reads the diagnostic information from the CM module
· and analyses the read diagnostic information
· this part must be coded by the customer

The processing of the “Get Diagnostic Information” command is controlled by
"Api_CtrlCAN_DB".sDIAG
· this structure provides all variables that are necessary to process a “Get Diagnostic Information” command
“Api_CtrlCAN_DB“.sDIAG.fReq
· the processing of a “Get Diagnostic Information” command is requested by this flag
· it controls the REQ inout parameter of Api_GetDiagnosticInfo FC

note:
=> 	the flag that controls the REQ inout parameter must not be
 	cleared by the application
=>	it is automatically cleared by Api_GetDiagnosticInfo [FC7]
	when the command has been processed

“Api_CtrlCAN_DB“.sDIAG.Data
· read diagnostic information are copied to this word array

[bookmark: _Toc27656491]Adaption of Api_GetDiagnosticInfo FC

Adaption:
· please read the comments:
· addressing / offset:
	line 77 – 97
	line 166 - 176
· interpretation of the record
	line 99 – 164

· Error code:
· see manual: 8.2.4 Get Diagnostic Information
			 => Error Codes
· comment:
	line 202 – 206
· error code
	line 207

· error number:
	error number = #iloopError

· must be coded by the customer

· Transparent CAN Status Field
· see manual: 8.2.4 Get Diagnostic Information
			 => Transparent CAN Status Field
· comment:
	line 212 – 214
· CAN status
	line 215

· error number:
	error number = #iloopError

· must be coded by the customer

· RDREC has reported an error
· comment:
	line 233 – 239

· must be coded by the customer
	line 240

[bookmark: _Toc13045092][bookmark: _Ref13045364][bookmark: _Ref13045402][bookmark: _Ref17197575][bookmark: _Toc27656492]Revised library
The library has been revised to provide more performance and flexibility.

The input / output parameters of the function blocks differ from the description in the user manual of the CM CANopen.

The revised library “CM CANopen Function Blocks V13 Ver. 2.0.0“
· has been created with TIA V13
· can be imported in TIA V14 / 15 / 15.1

The library provides the libraries for
· Transparent CAN mode
· Types / Transparent CAN
· the complete folder must be copied to
	“PLC data types”
· Master copies / Transparent CAN
· the complete folder must be copied to
	“Program blocks”

· CANopen mode
· Types / CANopen
· the complete folder must be copied to
	“PLC data types”
· Master copies / CANopen CAN
· the complete folder must be copied to
	“Program blocks”

[bookmark: _Toc27656493]Transparent CAN mode

Hint:
· CANopen interface functions are not supported by transparent CAN mode

The transparent CAN mode requires the following elements of the library to be copied to the project:
· Types / Transparent CAN:
· all data types must be copied to
	“PLC data types”
· Master copies / Transparent CAN
· all FBs / FCs must be copied to
	“Program blocks”

hint: SendReceiveErrorCode FC
· this function generates the error code for		CAN_CTRL FB
 	CAN_RCV FB
	CAN_SEND FB

· note:
· the library does not provide a function block for the interface function:
· Get Diagnostic Information
· this function must be implemented by the customer
· the transparent CAN demo provides an exemplary implementation of Get Diagnostic Information

Hint: receive / transmit FIFO
· the receive FIFO can hold maximum 256 received CAN frames
· the transmit FIFO can hold maximum 254 CAN frames to be transmitted

Hint: Power on
· reception of CAN frames
· the acceptance filter list is empty after power on
	CAN frames are not received
· the receive FIFO for CAN frames is empty
· the transmit FIFO for CAN frames is empty
· BUFFER LIMIT REACHED is set to its default value
· default value: 256
[bookmark: _Toc27656494]CAN_CTRL FB

This block is used to control the state of the transparent CAN layer and to set its parameters:
	see chapter 8.2.3 CAN_CTRL of the manual of the CM CANopen

The interface has been revised to provide more performance and flexibility.

Hint
· it is not possible that several CAN_CTRL commands are concurrently written to the same CM CANopen
· parallel processed CAN_CTRL commands to different CM CANopen must be processed by different instances of CAN_CTRL FB
· each CAN_CTRL command can be processed at any time

Settings of the CM module after power on or reset CAN controller
· all CAN-IDs are disabled in the acceptance filter
· the CM CANopen will not receive any CAN frame
	until the acceptance filter has been configured
to receive CAN frames

· the transmit queue is cleared
· the transmit queue is cleared by “Reset CAN controller”
· CAN_SEND command is refused
	while “Reset CAN controller” command is running

· the receive queue is cleared
· the receive queue is cleared by “Reset CAN controller”
· CAN_RCV command is refused
	while “Reset CAN controller” command is running

· value of BUFFER LIMIT REACHED
· power on: 	256
· reset:		value is not changed by Reset CAN controller

[bookmark: _Toc27656495][bookmark: _Toc467585504][bookmark: _Toc457542593]Parameters of CAN_CTRL FB

Input parameters:

	Name
	Data Type
	Description

	HW_ID
	HW_IO
	hardware identifier of the accessed CM CANopen in TIA Portal

	FCN
	Int
	Function code:
 1: Set acceptance filter in the module
 2: BUFFER LIMIT REACHED
 set number of frames to store before
 warning
 3: Clear RX buffer
· no additional data
 4: reserved, not supported
 5: Reset CAN controller
· stop CAN communication
· clears Bus Off
· clears the receive FIFO
· clears the transmit FIFO
· clears the acceptance filter
· starts the CAN controller
 starts CAN communication

· no additional data

	LEN_BufferLimit
	UInt
	FCN = 1:
· number of CAN Ids to be transferred to the CM CANopen
 	0 <= value <= 118

FCN = 2:
· value of BUFFER LIMIT REACHED
 	0 < value <= 256

FCN = 3 / 5:
· parameter is ignored

	CANIdList
	"FCN_1_CANIDList"
	FCN = 1:
· CAN identifier list
 contains the CAN identifiers
 	to be configured
 in the acceptance filter

· it is ignored for
	LEN_BufferLimit = 0

· the CAN identifier list is described by chapter: FCN = 1

FCN = 2 / 3 / 5:
· parameter is ignored

InOut parameters:

	Name
	Data Type
	Description

	REQ
	Bool
	TRUE:
· run the requested command
· hint 	
	it must not be reset while
 	the command is running

	flag is automatically cleared 		by CAN_CTRL
	when the command
		has been processed

FALSE:
· do not process a CAN_CTRL command
· hint
	it resets the state machine of
 	CAN_CTRL FB

	it does not affect the state 	machine of the CM CANopen
· all input parameters are ignored
· all output parameters are invalid
except BUSY that is FALSE

Output parameters:

	Name
	Data Type
	Description

	BUSY
	Bool
	this output is / stays true
	until the requested command is done then it is set to FALSE

BUSY = TRUE indicates that a command is running

	RET
	UInt
	error code:
see “Error Codes (RET)” of CAN_CTRL described in the manual of the CM CANopen

RET = 0 no error

additional error codes:
· 16#109C
- FCN = 1
 => 	LEN_BufferLimit > 118
· 16#109E
- FCN = 1
 => 	minimum one CAN-ID is out of
 	range
- FCN = 2
 => 	LEN_BufferLimit: out of range
		either 0 or > 256
· 16#109F
invalid state of the state machine of
CAN_CTRL FB

valid once
	when the BUSY signal turns FALSE until the next call of the function block

	CAN_STATUS
	Word
	CAN status:

bit coded:
bit 0 set: Bus off
bit 1 set: error passive
bit 2 set: receive queue: full
bit 3 set: receive queue: half full
 	receive FIFO holds
			minimum 128
 	 	unread CAN frames
bit 4 set: receive queue: warning limit reached
 	receive FIFO holds minimum
 		BUFFER LIMIT REACHED
 	 	unread CAN frames
bit 5 set: receive message lost
bit 6 set: transmit queue: half full
 	transmit FIFO holds
 			minimum 127 CAN frames
		that have not been transmitted yet 	
bit 7 set: transmit queue: warning limit reached
 	less than
			20 free CAN frame entries 		are left in the transmit FIFO
	
bit 8 - 14: not used
bit 15 set: valid

CAN_STATUS is only valid if bit 15 is set
	valid:
		CAN_STATUS = 16#8xxx
	invalid:
		CAN_STATUS = 16#0xxx

valid once
	when the BUSY signal turns FALSE until the next call of the function block

Note: CAN_STATUS
· an alarm will be generated if any bit except bit 15 (valid bit) is set
· the alarm is cleared when all bits 0 – 14 are reset

[bookmark: _Toc27656496]Function Codes

This chapter describes the supported function codes of the CAN_CTRL FB.

[bookmark: _Ref17198038][bookmark: _Toc27656497]FCN = 1

Function code 1 configures the CAN_RCV acceptance filter in the module
 	what CAN-IDs will be accepted when receiving data frames.

The module will not listen to the CAN bus if no CAN-ID in the filter is enabled.

Note:
· the acceptance filter can be changed at any time
· any (including all) CAN-ID(s) can be enabled / disabled by a later requested “Set Acceptance filter” command

Number of transferred CAN-IDs by the current command:
· the input parameter
	LEN_BufferLimit
informs about the valid number of entries (CAN-IDs) in
	CANIdList

· maximum 118 CAN identifiers can be configured
	by one FCN = 1 command in the acceptance filter

· hint: LEN_BufferLimit = 0
	will disable all CAN-IDs in the acceptance filter
	the CM module will not receive any CAN frame

CAN identifier list CANIdList:
· data type: “FCN_1_CANIDList”
· is provided by the library
· must not be changed by the customer
· definition: Array[0..117] of Word

· order of processing:
· 1st processed FCN_1_CANIDList[0]
…
last processed FCN_1_CANIDList[LEN_BufferLimit - 1]

· LEN_BufferLimit:
	see input LEN_BufferLimit of CAN_CTRL FB

· description of an entry in the CAN identifier list:
	see chapter 8.2.3 CAN_CTRL
			description of FCN = 1
· bits 0 – 10 contain the CAN identifier
· 29 bit CAN identifier are not supported

· bit 15 informs
	whether to enable (receive)
		bit 15: set enable
	or to disable (do not receive)
		bit 15: not set disable
the CAN identifier in the acceptance filter

Examples:
· CAN identifiers 16#000, 16#123 and 16#7FF
· shall be received:
· CANIdList:
FCN_1_CANIDList[0] := 16#8000; // receive 16#000
FCN_1_CANIDList[1] := 16#8123; // receive 16#123
FCN_1_CANIDList[2] := 16#87FF; // receive 16#7FF
· LEN_BufferLimit:
	LEN_BufferLimit := 3;

· shall be disabled / removed from the acceptance filter
· CANIdList:
FCN_1_CANIDList[0] := 16#0000; // remove 16#000
FCN_1_CANIDList[1] := 16#0123; // remove 16#123
FCN_1_CANIDList[2] := 16#07FF; // remove 16#7FF
· LEN_BufferLimit:
	LEN_BufferLimit := 3;

· all CAN identifiers shall be received:
· CANIdList:
· FCN_1_CANIDList[0] := 16#FFFF; // receive all
· LEN_BufferLimit:
· LEN_BufferLimit := 1;

· all CAN identifiers shall be received except CAN identifier 16#123
· CANIdList:
· FCN_1_CANIDList[0] := 16#FFFF; // receive all
FCN_1_CANIDList[1] := 16#0123; // remove 16#123

· LEN_BufferLimit
· LEN_BufferLimit := 2;

· disable all CAN identifiers
· LEN_BufferLimit = 0
· CANIdList:
	CAN identifier list is ignored

[bookmark: _Toc27656498]FCN = 2

Function code 2 configures warning limit of the receive FIFO on the CM module.
It gives the opportunity to define what number of frames will be stored in the receive FIFO before CAN status code bit 4 (BUFFER LIMIT REACHED) will be set.
Initially the buffer limit is set to 256 which means that the status bit will be set when the last place in the receive FIFO is used.
The user can change the buffer limit to any value between 1 and 256.

BUFFER LIMIT REACHED can be changed at any time.

Example:
· BUFFER LIMIT REACHED = 100
=> LEN_BufferLimit := 100

Note:
· an alarm will be generated when the receive FIFO of the CM module holds minimum BUFFER LIMIT REACHED unread CAN frame
· the alarm is cleared when the receive FIFO of the CM module holds less than BUFFER LIMIT REACHED unread CAN frames

Note:
· input CANIdList
· is not relevant for FCN 2
· it is ignored by CAN_CTRL FB
	

[bookmark: _Toc27656499]FCN = 3

Function code 3 empties the receive FIFO on the CM module.

Note:
· CAN_RCV may still hold the old frames that have been uploaded before the FCN 3 command has been processed.

Function code can be requested at any time.

[bookmark: _Hlk17115983]Note:
· input LEN_BufferLimit and input CANIdList
· they are not relevant for FCN 3
· they are ignored by CAN_CTRL FB

[bookmark: _Toc27656500]FCN = 5

Function code 5
· resets the CAN controller
	stops the CAN communication
· clears Bus Off
· clears the receive FIFO
· clears the transmit FIFO
· clears the acceptance filter
	all CAN-IDs are removed from the acceptance filter list
· starts the CAN controller finally
	starts the CAN communication

FCN 5 can be requested at any time.

Note:
· input LEN_BufferLimit and input CANIdList
· they are not relevant for FCN 5
· they are ignored by CAN_CTRL FB

· CAN_RCV and CAN_SEND commands
· are refused
	while processing FCN 5

[bookmark: _Toc467585513][bookmark: _Toc457542602][bookmark: _Toc27656501]CAN_RCV FB

CAN_RCV uploads the received CAN messages from the CM CANopen.

General hint:
· the received CAN frames
	that have passed the acceptance filter
are entered
	in a receive FIFO of the CM CANopen
according their order of reception

· an older CAN message in the receive FIFO is not removed
	if a message is received with the same CAN identifier

· the receive FIFO can hold
	maximum 256 CAN frames

· the CAN frames are read from this receive FIFO:
	first in / first out

· maximum 19 CAN frames
	can be uploaded
per processed CAN_RCV command
· number of uploaded CAN frames:
 minimum of [number of CAN frames still in the receive FIFO, 19]

Hint: CAN_RCV FB
· it is not possible that several CAN_RCV commands are concurrently processed to the same CM module
· parallel processed CAN_RCV commands to different CM CANopen must be processed by different instances of CAN_RCV FB

Implementation hint:
· the acceptance filter (see FCN 1 of CAN_CTRL)
	should only accept the CAN identifiers that shall be received
to avoid an overrun of the receive FIFO
· CAN_RCV FB should run all the time
	to avoid an overrun of the receive FIFO
· input REQ of CAN_RCV FB := TRUE

[bookmark: _Toc467585514][bookmark: _Toc457542603][bookmark: _Toc27656502]Parameters of CAN_RCV FB

Input parameters:

	Name
	Data Type
	Description

	REQ
	Bool
	TRUE:
· run CAN_RCV command
· hint 	
	it must not be reset while
 	the command is running
· recommended:
	always TRUE

FALSE:
· do not process a CAN_RCV command
· hint
	it resets the state machine of
 	CAN_RCV FB

	it does not affect the state 	machine of the CM CANopen
· all input parameters are ignored
· all output parameters are invalid
except BUSY that is FALSE

	HW_ID
	HW_IO
	hardware identifier of the accessed CM CANopen in TIA Portal

InOut parameters:

	Name
	Data Type
	Description

	CAN_FRAMES
	"CANFrames"
	Destination area for the uploaded CAN frames

CAN_FRAMES is described by chapter:
	11.3.2

valid once
	when BUSY turns FALSE
	and RET reports “no error”
	and NO_FRAMES <> 0
until the next call of the function block

Output parameters:

	Name
	Data Type
	Description

	BUSY
	Bool
	this output is / stays true
	until the requested command is done then it is set to FALSE

BUSY = TRUE indicates that a command is running

	RET
	UInt
	error code:
see “Error Codes (RET)” of CAN_RCV described in the manual of the CM module

RET = 0 no error

valid once
	when BUSY turns FALSE
until the next call of the function block

	CAN_STATUS
	Word
	CAN status:

bit coded:
bit 0 set: Bus off
bit 1 set: error passive
bit 2 set: receive queue: full
bit 3 set: receive queue: half full
 	receive FIFO holds
			minimum 128
 	 	unread CAN frames
bit 4 set: receive queue: warning limit reached
 	receive FIFO holds minimum
 		BUFFER LIMIT REACHED
 	 	unread CAN frames
bit 5 set: receive message lost
bit 6 set: transmit queue: half full
 	transmit FIFO holds
 			minimum 127 CAN frames
		that have not been transmitted yet 	
bit 7 set: transmit queue: warning limit reached
 	less than
			20 free CAN frame entries 		are left in the transmit FIFO
	
bit 8 - 14: not used
bit 15 set: valid

CAN_STATUS is only valid if bit 15 is set
	valid:
		CAN_STATUS = 16#8xxx
	invalid:
		CAN_STATUS = 16#0xxx

valid once
	when the BUSY signal turns FALSE until the next call of the function block

	NO_FRAMES
	SInt
	number of uploaded CAN frames

maximum 19 CAN frames are uploaded
	per processed CAN_RCV command

valid once
	when BUSY turns FALSE
	and RET reports “no error”
until the next call of the function block

[bookmark: _Ref17197816][bookmark: _Ref17198121][bookmark: _Toc27656503]Description: InOut parameter CAN_FRAMES

This chapter describes the arrangement of uploaded CAN frames
	in the inout parameter CAN_FRAMES
of CAN_RCV FB.

Overview:
· maximum 19 CAN frames are uploaded
		per processed CAN_RCV command

· this limit is set
 	by the specification of the communication
between the PLC and the CM CANopen

· the CAN frames are uploaded according their order of reception
· 1st uploaded CAN frame	 oldest received CAN frame
· nth uploaded CAN frame	 nth oldest received CAN frame
· hint:
· each received CAN frame
	that has passed the acceptance filter
is entered in the receive FIFO of the CM CANopen

· older CAN frames in the receive FIFO
	are not removed from the receive FIFO
when a CAN frame
	with the same CAN identifier
is received

· data type of inout parameter CAN_FRAMES:
· data type:		“CANFrames”
· name: 	abCANFrames
· data type: 	Array[0..227] of Byte
· it supports the upload of maximum 19 CAN frames
· it must not be changed by the customer

· “CANFrames” is provided by the library

Representation of a CAN frame:
· each CAN frame always covers 12 bytes in the byte array
· description of the layout of a CAN frame

	descriptor
	byte order
	comment

	CAN identifier
	0
	most significant byte
 	of the CAN identifier

	
	1
	least significant byte
	of the CAN identifier

	RTR info
	2
	= 0: 	no RTR request
	=> CAN frame transfers data bytes

<> 0: 	RTR request
	=> CAN frame does not 	
 	 transfer data bytes
	=> requests the transmission
 	 of the CAN frame
 	 =>	that uses
			the same CAN identifier
 		as the received RTR CAN 			frame

	number
data bytes
	3
	no RTR request
	number of data bytes
	transferred by the CAN frame

RTR request:
 	minimum number of data bytes			that should be transferred
 	by the requested CAN frame

	Data data field of the CAN frame

a) RTR request:
	data field is invalid
b) no RTR request:
 	valid data bytes:
	 1 … number data bytes

	
	4
	1st data byte in the data field

	
	5
	2nd data byte in the data field

	
	6
	3rd data byte in the data field

	
	7
	4th data byte in the data field

	
	8
	5th data byte in the data field

	
	9
	6th data byte in the data field

	
	10
	7th data byte in the data field

	
	11
	8th data byte in the data field

Representation of uploaded CAN frames in the data area:

The arrangement of the uploaded CAN frames in the data field is explained by the data area:
· the uploaded CAN frames are copied to
	"Api_CtrlCAN_DB".sRCV.Data

that data type is
	“CANFrames”

Arrangement of the uploaded CAN frames in the data field:
· 1st uploaded CAN frame oldest CAN frame in the receive FIFO

CAN frame covers
 "Api_CtrlCAN_DB".sRCV.Data.abCANFrames [0]
 …
 "Api_CtrlCAN_DB".sRCV.Data.abCANFrames[11]

· nth uploaded CAN frame nth oldest CAN frame in the receive FIFO

CAN frame covers
 "Api_CtrlCAN_DB".sRCV.Data.abCANFrames[(n-1) * 12 + 0]
 …
 "Api_CtrlCAN_DB".sRCV.Data.abCANFrames[(n-1) * 12 + 11]

Hint: valid CAN frames
· the number of valid CAN frames depends of the number of CAN frames that have been uploaded from the CM CANopen
· number of uploaded frames:
· value of output NO_FRAMES of CAN_RCV FB

· valid CAN frames CAN frames that must be processed
· value of output NO_FRAMES = 0
· receive FIFO was empty:
=> no action

· value of output NO_FRAMES > 0 (max. 19)
· 1st CAN frame … NO_FRAMESth CAN frame
	must be processed

Representation of the nth CAN frame in the data field:
· offset of the nth CAN frame in the byte array:
	offset = (n-1) * 12

· CAN identifier:
· most significant byte of the CAN identifier
	"Api_CtrlCAN_DB".sRCV.Data.abCANFrames[offset]

· least significant byte of the CAN identifier
	"Api_CtrlCAN_DB".sRCV.Data.abCANFrames[offset + 1]

· e.g.:
	most significant byte of the CAN identifier = 16#01
	least significant byte of the CAN identifier = 16#23

	=> CAN identifier = 16#0123

· RTR information:
· "Api_CtrlCAN_DB".sRCV.Data.abCANFrames[offset + 2]

· value = 0 no RTR request data message
value <> 0 RTR request RTR message
· RTR message:
	an RTR message does not transfer data
	it requests
		the transmission of a CAN frame
	with the same CAN identifier as the RTR message

· number of data bytes DLC (Data Length Code)
· DLC = "Api_CtrlCAN_DB".sRCV.Data.abCANFrames[offset + 3]

· hint: RTR message
· the requested CAN frame should minimum transfer “number of data bytes” data bytes

· data:
· data field is only relevant for a data message no RTR request

· 1st data byte in the data field of the CAN frame
 "Api_CtrlCAN_DB".sRCV.Data.abCANFrames[offset + 3 + 1]

		valid if number of data bytes >= 1

· nth data byte in the data field of the CAN frame
 "Api_CtrlCAN_DB".sRCV.Data.abCANFrames[offset + 3 + n]

		valid if number of data bytes >= n

· 8th data byte in the data field of the CAN frame
 "Api_CtrlCAN_DB".sRCV.Data.abCANFrames[offset + 3 + 8]

		valid if number of data bytes = 8

[bookmark: _Toc467585519][bookmark: _Toc457542608]

[bookmark: _Toc27656504]CAN_SEND FB

CAN_SEND downloads CAN messages to the CM module to be sent to the CAN network.

[bookmark: _Hlk17190146]General hint:
· the downloaded CAN frames are entered
	in a transmit FIFO of the CM CANopen
according their download order

· the CAN frames are transmitted from this transmit FIFO:
	first in / first out

· an older CAN message in the transmit FIFO is not removed
	if a message is entered with the same CAN identifier

· maximum 19 CAN frames
	can be downloaded
per processed CAN_SEND command

· the transmit FIFO can hold
	maximum 254 CAN frames

Hint: CAN_SEND FB
· it is not possible that several CAN_SEND commands are concurrently processed to the same CM module
· parallel processed CAN_SEND commands to different CM modules must be processed by different instances of CAN_SEND FB

[bookmark: _Toc467585520][bookmark: _Toc457542609][bookmark: _Toc27656505]Parameters of CAN_SEND FB

Input parameters:

	Name
	Data Type
	Description

	HW_ID
	HW_IO
	[bookmark: OLE_LINK3][bookmark: OLE_LINK4]hardware identifier of the accessed CM module in TIA Portal

	NO_FRAMES
	USInt
	number of CAN frames to be transferred

valid range:
		0 <= value <= 19

	CAN_FRAMES
	"CANFrames"
	source area where to get the CAN frames to be transferred

CAN_FRAMES is described by chapter: 		11.4.2

InOut parameters:

	Name
	Data Type
	Description

	REQ
	Bool
	TRUE:
· run the requested download
· hint	
	it must not be reset while
 	the command is running

	flag is automatically cleared 		by CAN_SEND
	when the command
		has been processed

FALSE:
· do not run a download of CAN frames
· hint
	it resets the state machine of
 	CAN_SEND FB

	it does not affect the state 	machine of the CM CANopen
· all inputs are ignored
· all outputs are invalid except BUSY

Output parameters:

	Name
	Data Type
	Description

	BUSY
	Bool
	this output is / stays true
	until the requested command is done then it is set to FALSE

BUSY = TRUE indicates that a command is running

	
RET
	UInt
	error code:
see “Error Codes (RET)” of CAN_SEND described in the manual of the CM module

RET = 0 no error

additional error codes:
· 16#109C
 => 	NO_FRAMES > 19
· 16#109D
 => 	the CAN-ID 	or the number of 	data bytes of a CAN frame is out
 	of range
· 16#109F
 => 	invalid state of the state
 	machine of CAN_SEND

valid once
	when the BUSY signal turns FALSE until the next call of the function block

	CAN_STATUS
	Word
	CAN status:

bit coded:
bit 0 set: Bus off
bit 1 set: error passive
bit 2 set: receive queue: full
bit 3 set: receive queue: half full
 	receive FIFO holds
			minimum 128
 	 	unread CAN frames
bit 4 set: receive queue: warning limit reached
 	receive FIFO holds minimum
 		BUFFER LIMIT REACHED
 	 	unread CAN frames
bit 5 set: receive message lost
bit 6 set: transmit queue: half full
 	transmit FIFO holds
 			minimum 127 CAN frames
		that have not been transmitted yet 	
bit 7 set: transmit queue: warning limit reached
 	less than
			20 free CAN frame entries 		are left in the transmit FIFO
	
bit 8 - 14: not used
bit 15 set: valid

CAN_STATUS is only valid if bit 15 is set
	valid:
		CAN_STATUS = 16#8xxx
	invalid:
		CAN_STATUS = 16#0xxx

valid once
	when the BUSY signal turns FALSE until the next call of the function block

[bookmark: _Toc457542612]

[bookmark: _Toc16079357]

[bookmark: _Ref17197985][bookmark: _Ref17198167][bookmark: _Toc27656506][bookmark: _GoBack]Description: Input parameter CAN_FRAMES

This chapter describes the arrangement of CAN frames
	that shall be transmitted
in the input parameter CAN_FRAMES of CAN_SEND FB.

Overview:
· maximum 19 CAN frames can be transferred
		per processed CAN_SEND command

· this limit is set
 	by the specification of the communication
between the PLC and the CM CANopen

· the CAN frames are entered
 	in the transmit FIFO of the CM CANopen
according their order in the input CAN_FRAMES

· 1st downloaded CAN frame 	1st entered CAN frame
						in the transmit FIFO
· nth downloaded CAN frame nth entered CAN frame
						in the transmit FIFO
· hint:
· older CAN frames in the transmit FIFO
	are not removed from the transmit FIFO
when a CAN frame
	with the same CAN identifier
is entered in the transmit FIFO

· data type of input parameter CAN_FRAMES:
· its data type is “CANFrames”
· data type:		“CANFrames”
· name: 	abCANFrames
· data type: 	Array[0..227] of Byte
· it supports the download of maximum 19 CAN frames
· it must not be changed by the customer

· “CANFrames” is provided by the library

Representation of a CAN frame:
· each CAN frame always covers 12 bytes in the byte array
· description of the layout of a CAN frame

	descriptor
	byte order
	comment

	CAN identifier
	0
	most significant byte
 	of the CAN identifier

	
	1
	least significant byte
	of the CAN identifier

	RTR info
	2
	= 0: 	no RTR request
	=> CAN frame transfers data bytes

<> 0: 	RTR request
	=> CAN frame does not 	
 	 transfer data bytes
	=> requests the transmission
 	 of the CAN frame
 	 =>	that uses
			the same CAN identifier
 		as the RTR CAN frame

	number
data bytes
	3
	no RTR request
	number of data bytes
	transferred by the CAN frame

RTR request:
 	minimum number of data bytes			that should be transferred
 	by the requested CAN frame

	Data data field of the CAN frame

a) RTR request:
	data field is ignored / must not be updated
b) no RTR request:
 	valid data bytes that must be updated:
	 1 … number data bytes

	
	4
	1st data byte in the data field

	
	5
	2nd data byte in the data field

	
	6
	3rd data byte in the data field

	
	7
	4th data byte in the data field

	
	8
	5th data byte in the data field

	
	9
	6th data byte in the data field

	
	10
	7th data byte in the data field

	
	11
	8th data byte in the data field

Representation of CAN frames in the data area:

The arrangement of the downloaded CAN frames in the data field is explained by the data area:
· the CAN frames are entered in
	"Api_CtrlCAN_DB".sSEND.Data

that data type is
	“CANFrames”

Arrangement of the CAN frames in the data field:
· 1st entered CAN frame 1st entered in the transmit FIFO

CAN frame covers
 "Api_CtrlCAN_DB".sSEND.Data.abCANFrames[0]
 …
 "Api_CtrlCAN_DB".sSEND.Data.abCANFrames[11]

· nth entered CAN frame nth entered in the transmit FIFO

CAN frame covers
 "Api_CtrlCAN_DB".sSEND.Data.abCANFrames[(n-1) * 12 + 0]
 …
 "Api_CtrlCAN_DB".sSEND.Data.abCANFrames[(n-1) * 12 + 11]

Hint: valid CAN frames
· the number of valid CAN frames depends of the number of CAN frames that shall be transferred to the CM CANopen
· number of frames to be transferred:
	value at input NO_FRAMES of CAN_SEND FB

· valid CAN frames CAN frames that must be initialized
· value at input NO_FRAMES = 0
· no CAN frame is to be transferred:
=> CAN_SEND does not communicate with CM CANopen

· value at input NO_FRAMES > 0 (max. 19)
· 1st CAN frame … NO_FRAMESth CAN frame
	is transferred to the CM CANopen
· 1st CAN frame … NO_FRAMESth CAN frame
	must be initialized / transfer valid CAN frames

Representation of the nth CAN frames in the data field:
· offset of the nth CAN frame in the byte array:
	offset = (n-1) * 12

· CAN identifier:
· most significant byte of the CAN identifier
	"Api_CtrlCAN_DB".sSEND.Data.abCANFrames[offset]

· least significant byte of the CAN identifier
	"Api_CtrlCAN_DB".sSEND.Data.abCANFrames[offset + 1]

· e.g.:
	CAN identifier = 16#0123	
	=> most significant byte of the CAN identifier = 16#01
	=> least significant byte of the CAN identifier = 16#23

· RTR information:
· "Api_CtrlCAN_DB".sSEND.Data.abCANFrames[offset + 2]

· value = 0 no RTR request data message
value <> 0 RTR request RTR message

· RTR message:
	an RTR message does not transfer data
	it requests
		the transmission of a CAN frame
	with the same CAN identifier as the RTR message

· number of data bytes DLC (Data Length Code)
· DLC = "Api_CtrlCAN_DB".sSEND.Data.abCANFrames[offset + 3]

· hint: RTR message
· the requested CAN frame should minimum transfer “number of data bytes” data bytes
· recommended (if the data size is fix):
· number of data bytes
	that are really transferred
by the requested CAN frame

· data:
· data field is only relevant for a data message (no RTR request)

· 1st data byte in the data field of the CAN frame
 "Api_CtrlCAN_DB".sSEND.Data.abCANFrames[offset + 3 + 1]

		valid if number of data bytes >= 1

· nth data byte in the data field of the CAN frame
 "Api_CtrlCAN_DB".sSEND.Data.abCANFrames[offset + 3 + n]

		valid if number of data bytes >= n

· 8th data byte in the data field of the CAN frame
 "Api_CtrlCAN_DB".sSEND.Data.abCANFrames[offset + 3 + 8]

		valid if number of data bytes = 8

[bookmark: _Toc27656507]SendReceiveErrorCode FC

This function is called by
				CAN_CTRL FB
				CAN_RCV FB
				CAN_SEND FB
due to an error.
It generates the error codes
	that are available at the output RET of
CAN_CTRL FB, CAN_RCV FB and CAN_SEND FB.

[bookmark: _Toc27656508]Status LEDs
This chapter describes the single LED patterns to avoid misinterpretation.

Note: priority of the indicated error events
· the highest prior error is indicated if there are several errors
· order of priority

	Priority
	Indication
	Error event

	highest
	1 Hz
	fatal error

	decreasing
priority
	On
	bus off

	
	Triple flash
	not supported by transparent CAN

	
	Double flash
	

	
	Single flash
	warning limit reached in CAN controller

	lowest
	Blinking
	lost receive message

[bookmark: _Toc13045103][bookmark: _Toc27656509]Indicator states and flash rates
[image:]

	Copyright IXXAT Automation GmbH
	6
	<Product Name> Manual, Version

	Copyright HMS Technology Center Ravensburg GmbH
	5
	CM CANopen,
Transparent CAN Application, V1.0

image2.png
CM Module

Nopen Demo » PLC_1 [CPU 1215C DUDCRly]

[Topology view [Networkview [} Device view ||

Pl — RO =

§7-1200 rack.

' Properties | " Info_(@)| 2| Diagnostics
[General [10 tags [Systemconstants [Texts |

~ General ——
Projectinformation ware ldentier
Catalog information Hardware identifier
~ CANopen interface f

General Hardware identifier: [271

Module parameters

(<[] [5]

image3.png
CM Module

Nopen Demo » PLC_1 [CPU 121

DUDCRlY]

[Topology view [y Network view [IY Device view |]

i — T AT =]

§7-1200 rack.

d Properties |*i}Info_@)| %/ Diagnostics.

General | 10 tags | System constants | Texts

= e
e —

ol W 5

image4.png
CM module » PLC_1 [CPU 1215C DUDCRl] » PLC tags

[@Tags |@Userconstants [;@ System constants ||
E
PLC tags
~ (] cMmodule Name Data type Value Comment

I Add newdevice 21] Local-HsC s H_Hsc 261
g Devices & networks 25 [Local-HsC 6 H_Hsc 262
~ [PLC_1 [CPU 1215C DCIDCRY] 23] Local-A2AQ_2.1 Ha_SubModule 263
Y Device configuration 24] Local-DL14.00_10_1 Hu_Sublvodule 264
%] online &diagnostics 25 G Locol-pulse 1 H_Pum 265
» I Frogram blocks 26 | Local-pulse_2 Ha_Pwm 266
» [Technology objects 27 | Local-pulse_3 Ha_Pwm 267
» [Extemal source files 28 | Local-pulse_4 e 268

~ [3 rictags 25 [iE] 08_vin osrorce 1
& Show il 55 50 (E[tolcncmepe ron 270

I Add new tag table

image5.png

image6.png
v (£ Application: CANAd specific callback functions.
~ [l Receive
B Example_GetDataCANIG_101h [FC1]
B Bample GetDatnCANId 101h 1 FCI]

image7.png
v (£ Application: CANAd specific callback functions.
~ [l Receive
B Example_GetDataCANIG_101h [FC1]
B CetDataCANI. 123h FOI]

image8.png
GetDataCANId_123h [FC2]

General
General Coneral
Information eneral
Time stamps
Compiltion Name: [GetDstsCanid_123h
Frotection
Type: [rC
seibutes
Langusge: s
i Number: |2 3
@ manual
d O automatic
< i B
o[|

image9.png
v (£ Application: CANAd specific callback functions.
~ [l Receive
B Example_GetDataCANIG_101h [FC1]
4 GetDataCANId_123h [FC2]

image10.png
231
232
233
234
235
236
237
238
239
210
201
202
243
201
215
246
207
262
209
250
251
252
253
254
255
256
257
252
259
260
261
262
263
264
265
266
267
268

SELLLLLE L LD EL LTI DI LTI LTI 0T 110011

/7 switeh CAN-Id specific

// => call CAN-Td specific callback function
s

CASE $iCOBId OF

ey

/7 demo example:

// - receive and process the CAN frame
// with the CAN idenvifier 101n
DL L L LL L L L L L

16#101: // CAN-Td 101n

// CAN frame with CAN-Td 101h is processed by its CAN-Id specific callback function

"Example_GetDataCANIA_101h" (bRTR

163101; // CAN-Td 101n

EDacaSize
BDataBytel
BDataByte2
BDataBytes
BDataByted
BDataBytes
EDataBytes
BDataByteT
BDataBytes

"Api_CCrlCAN_DB".sRCV. Data. abCANFrames [fusiOffset
"Api_CCrlCAN_DB".sRCV. Data. abCANFrames [fusiOffset
"Api_CCrlCAN_DB".sRCV. Data. abCANFrames [fusiOffset
"Api_CCrlCAN_DB".sRCV. Data. abCANFrames [fusiOffset
"Api_CCrlCAN_DB".sRCV. Data. abCANFrames [fusiOffset
"Api_CCrlCAN_DB".sRCV. Data. abCANFrames [fusiOffset
"Api_CCrlCAN_DB".sRCV. Data. abCANFrames [fusiOffset
"Api_CCrlCAN_DB" . sRCV. Data. abCANFrames [fusiOffset

// CAN frame with CAN-Td 101h is processed by its CAN-Id specific callback function

"Example_GetDataCANIA 101h" (bRTR

ELSE // CASE $iCOBId OF

EDataSize
BDataBytel
BDataByte2
BDataBytes
BDataByted
BDataBytes
EDataBytes
BDataByteT
BDataBytes

"Api_CCrlCAN_DB".sRCV. Data. abCANFrames [fusiOffset
"Api_CCrlCAN_DB".sRCV. Data. abCANFrames [fusiOffset
"Api_CCrlCAN_DB".sRCV. Data. abCANFrames [fusiOffset
"Api_CCrlCAN_DB".sRCV. Data. abCANFrames [fusiOffset
"Api_CCrlCAN_DB".sRCV. Data. abCANFrames [fusiOffset
"Api_CCrlCAN_DB".sRCV. Data. abCANFrames [fusiOffset
"Api_CCrlCAN_DB".sRCV. Data. abCANFrames [fusiOffset
"Api_CCrlCAN_DB" . sRCV. Data. abCANFrames [fusiOffset

.
N
N
N
N
N
N
N

.
N
N
N
N
N
N
N

"Api_CCrlCAN_DB".sRCV. Data.abCANFrames [#usiOffset + #cOffset RIRI,
"Api_CCrlCAN_DB".sRCV. Data.abCANFrames [#usiOffset + #cOffset_DLCI,

#co£aet Databytel],
#co£aet Databyte2],
#cortaet_Databytes],
#costaet Databyted],
#coszaet_Databytes],
#corzaet_Databyteé],
#cor£aet Databyte7],
#costaet_Databytet])

"Api_CCrlCAN_DB".sRCV. Data.abCANFrames [#usiOffset + #cOffset RIRI,
"Api_CCrlCAN_DB".sRCV. Data.abCANFrames [#usiOffset + #cOffset_DLCI,

#co£aet Databytel],
#co£aet Databyte2],
#cortaet_Databytes],
#costaet Databyted],
#coszaet_Databytes],
#corzaet_Databyteé],
#cor£aet Databyte7],
#coszaet_Databytet]);

image11.png
231
232
233
234
235
236
237
238
239
210
201
202
243
201
215
246
207
262
209
250
251
252
253
254
255
256
257
252
259
260
261
262
263
264
265
266
267
268

SELLLLLE L LD EL LTI DI LTI LTI 0T 110011

/7 switeh CAN-Id specific

// => call CAN-Td specific callback function
s

CASE $iCOBId OF

g

/7 demo example:

// - receive and process the CAN frame
// with the CAN idenvifier 101n
DL L L LL L L L L L

16#101: // CAN-Td 101n

// CAN frame with CAN-Td 101h is processed by its CAN-Id specific callback function

"Example_GetDataCANIA_101h" (bRTR

163101; // CAN-Td 101n

EDacaSize
BDataBytel
BDataByte2
BDataBytes
BDataByted
BDataBytes
EDataBytes
BDataByteT
BDataBytes

"Api_CCrlCAN_DB".sRCV. Data. abCANFrames [fusiOffset
"Api_CCrlCAN_DB".sRCV. Data. abCANFrames [fusiOffset
"Api_CCrlCAN_DB".sRCV. Data. abCANFrames [fusiOffset
"Api_CCrlCAN_DB".sRCV. Data. abCANFrames [fusiOffset
"Api_CCrlCAN_DB".sRCV. Data. abCANFrames [fusiOffset
"Api_CCrlCAN_DB".sRCV. Data. abCANFrames [fusiOffset
"Api_CCrlCAN_DB".sRCV. Data. abCANFrames [fusiOffset
"Api_CCrlCAN_DB" . sRCV. Data. abCANFrames [fusiOffset

// CAN frame with CAN-Td 101h is processed by its CAN-Id specific callback function

ELSE // CASE $iCOBId OF

"Api_CCrlCAN_DB" .sRCV. Data.abCANFrames [fusiOffset + #cOffset RIRI,
"hpi_CCrlCAN_DB".sRCV. Data.abCANFrames [fusiOffset + #cOffset_DLCI,

EDacaSize
BDataBytel
BDataByte2
BDataBytes
BDataByted
BDataBytes
EDataBytes
BDataByteT
BDataBytes

"Api_CCrlCAN_DB".sRCV. Data. abCANFrames [fusiOffset
"Api_CCrlCAN_DB".sRCV. Data. abCANFrames [fusiOffset
"Api_CCrlCAN_DB".sRCV. Data. abCANFrames [fusiOffset
"Api_CCrlCAN_DB".sRCV. Data. abCANFrames [fusiOffset
"Api_CCrlCAN_DB".sRCV. Data. abCANFrames [fusiOffset
"Api_CCrlCAN_DB".sRCV. Data. abCANFrames [fusiOffset
"Api_CCrlCAN_DB".sRCV. Data. abCANFrames [fusiOffset
"Api_CCrlCAN_DB" . sRCV. Data. abCANFrames [fusiOffset

.
N
N
N
N
N
N
N

.
N
N
N
N
N
N
N

"Api_CCrlCAN_DB".sRCV. Data.abCANFrames [#usiOffset + #cOffset RIRI,
"Api_CCrlCAN_DB".sRCV. Data.abCANFrames [#usiOffset + #cOffset_DLCI,

#co£aet Databytel],
#co£aet Databyte2],
#cortaet_Databytes],
#costaet Databyted],
#coszaet_Databytes],
#corzaet_Databyteé],
#cor£aet Databyte7],
#costaet_Databytet])

#co£aet Databytel],
#co£aet Databyte2],
#cortaet_Databytes],
#costaet Databyted],
#coszaet_Databytes],
#corzaet_Databyteé],
#cor£aet Databyte7],
#coszaet_Databytet]);

image12.png
231
232
233
23
235
236
237
232
233
210
201
212
23
218
215
215
207
22
29
250
251
252
253
254
255
256
257
252
258
260
261
262
263
261
265
265
267
268

i

/7 switeh CAN-Id specific

// => call CAN-Td specific callback function
s

CASE $iCOBId OF

g

/1 demo example:

// - receive and process the CAN frame
// with the CAN idenvifier 101n
DL L L LL L L L L L

16#101: // CAN-Td 101n

// CAN frame with CAN-Td 101h is processed by its CAN-Id specific callback function

"Example_GetDataCANIA_101h" (bRTR

7/ CAN-Td 1230

EDacaSize
BDataBytel
BDataByte2
BDataBytes
BDataByted
BDataBytes
EDataBytes
BDataByteT
BDataBytes

"Api_CCrlCAN_DB".sRCV. Data. abCANFrames [fusiOffset
"Api_CCrlCAN_DB".sRCV. Data. abCANFrames [fusiOffset
"Api_CCrlCAN_DB".sRCV. Data. abCANFrames [fusiOffset
"Api_CCrlCAN_DB".sRCV. Data. abCANFrames [fusiOffset
"Api_CCrlCAN_DB".sRCV. Data. abCANFrames [fusiOffset
"Api_CCrlCAN_DB".sRCV. Data. abCANFrames [fusiOffset
"Api_CCrlCAN_DB".sRCV. Data. abCANFrames [fusiOffset
"Api_CCrlCAN_DB" . sRCV. Data. abCANFrames [fusiOffset

// CAN frame with CAN-Td 123h is processed by its CAN-Id specific callback function

"GetDataCANIA_123h" (bRTR

ELSE // CASE $iCOBId OF

"hpi_CCrlCAN_DB".sRCV. Data.abCANFrames [fusiOffset + #cOffset RIRI,
"hpi_CCrlCAN_DB".sRCV. Data.abCANFrames [fusiOffset + #cOffset_DLCI,

EDacaSize
BDataBytel
BDataByte2
BDataBytes
BDataByted
BDataBytes
EDataBytes
BDataByteT
BDataBytes

"Api_CCrlCAN_DB".sRCV. Data. abCANFrames [fusiOffset
"Api_CCrlCAN_DB".sRCV. Data. abCANFrames [fusiOffset
"Api_CCrlCAN_DB".sRCV. Data. abCANFrames [fusiOffset
"Api_CCrlCAN_DB".sRCV. Data. abCANFrames [fusiOffset
"Api_CCrlCAN_DB".sRCV. Data. abCANFrames [fusiOffset
"Api_CCrlCAN_DB".sRCV. Data. abCANFrames [fusiOffset
"Api_CCrlCAN_DB".sRCV. Data. abCANFrames [fusiOffset
"Api_CCrlCAN_DB" . sRCV. Data. abCANFrames [fusiOffset

.
N
N
N
N
N
N
N

.
N
N
N
N
N
N
N

‘Api_CtrlCAN DB".sRCV.Date.abCANFrames [#usiOffaet + $cOffaet RTR],
"Api_CCrlCAN_DB".sRCV. Data.abCANFrames [#usiOffset + #cOffset_DLCI,

#co£aet Databytel],
#co£aet Databyte2],
#cortaet_Databytes],
#costaet Databyted],
#coszaet_Databytes],
#corzaet_Databyteé],
#cor£aet Databyte7],
#costaet_Databytet])

#c0zzser_DataByrel],
#c0zzser_DataByte2],
#c0zzser_DataByres],
#c0zzser_DataByted],
#c0zzser_DataBytes],
#c0zzser_DataBytes],
#c0zzser_DataByte7],
#c0zzser_DataByred]);

image13.png
v (£ Application: CANAd specific callback functions.
» [l Receive
~ [l send
B Example_EnterCANFrame_CANId_201h [FC20]
S i mpie EnterCAliFrame CARIA 301h. 7 [FC30]

image14.png
v (£ Application: CANAd specific callback functions.
» [l Receive
~ [l send
B EnterCANFrame. CAN 234k FC30]
B Erample.EnterCANFrame. CANIG 201h [FC20]

image15.png
EnterCANFrame_CANId_234h [FC21]

General
General Coneral
Information eneral
Time stamps
Compiltion Name: [EntercanFrame_CANIG_23¢h
Frotection
Type: [rC
seibutes
Langusge: s
0 Number: |p1 3
@ manual
d O automatic
< i B
o[|

image16.png
v [l Application: CANH specific callback functions
» [l Receive
~ [l send
B EnterCANFrame. AN 234k FCa1]
B Erample.EnterCANFrame. CANIG 201h [FC20]

image17.png
2516
252
253
2540
255
256
257
252
259
260
261
262
26300
264
265
266
267
262
269
210
21
212
273
21
275
276
2n
278
2190
280
221
222
223
224
255
226
227
22
229
290
291
202

FOR #silocp i

0 TO #siloopEnd DO

1/ get CAN-ID of the next CAN frame to be entered
CASE #CANI_SendList.CANIAList[#9iloop] OF

g

7/ demo example supports:
/7 - cAN-Ta: 201m

DL LL L L LA AL L

168201: // CAN-ID 164201

// CAN frame with CAN-Td 201h shall be transmitted

/7 => call CAN_Id specific callback function
"Exarple_EnterCANFrare CANIA_201h" (CANI_MSB
cantd 1ss
RIR

DataBytesize =

DataBytel

DataBytes =>

DataBytes
Datayted
DataBytes
DataBytes
DataBytel
DataBytes

163201; // CAN-ID 164201

"Api_CCrlCAN_DB" . sSEND. Data.abCANFzames [#usiOffset + #cOffset_COBID MSB],
"hpi_CGrlCAN_DB". sSEND. Date.abCANFrames [#usiOffset + #cOffset COBID_LSBI,

"Api_CCrICAN_DB" . 3SEND. Data. abCANFrames [fusiOffset
"Api_CCrlCAN_DB" . sSEND. Data. abCANFrames [fusiOffset
"Api_CCrlCAN_DB" . sSEND. Data. abCANFrames [fusiOffset
"Api_CCrlCAN_DB" . sSEND. Data. abCANFrames [fusiOffset
"Api_CCrlCAN_DB" . sSEND. Data. abCANFrames [fusiOffset
"Api_CCrlCAN_DB" . sSEND. Data. abCANFrames [fusiOffset
"Api_CCrlCAN_DB" . sSEND. Data. abCANFrames [fusiOffset
"Api_CCrlCAN_DB" . sSEND. Data. abCANFrames [fusiOffset

// CAN frame with CAN-Td 201h shall be transmitted

N

N
N
N
N
N
N
N

"Api_CCrlCAN_DB" . sSEND. Data.abCANFrames [fusiOffset + #cOffset RIR],
"Api_CCrlCAN_DB". sSEND. Data.abCANFrames [#usiOffset + #cOffset DLCI,

#coftaet_Databytel],
#co£aet Databyte2],
#cortaet_Databytes],
#costaet Databyted],
#coszaet_Databytes],
#corzaet_Databyteé],
#cor£aet Databyte7],
#costaet_Databytet])

/7 => call CAN_Id specific callback function
"Example EnterCANFrame CANIA 201n" (CANIA MSB => "Api_CtrlCAN_DB".SSEND.Data.abCANFrames(fusiOffset + §cOffsec_COBID MSB],

cantd_1ss
RIR

DataBytesize

DataBytel
DataByte2
DataBytes
Datayted
DataBytes
DataBytes =
DataBytel

DataBytes =>

ELSE // Statement section ELSE

"hpi_CGrlCAN_DB". sSEND. Date.abCANFrames [#usiOffset + #cOffset COBID_LSBI,

"Api_CCrICAN_DB" . 3SEND. Data. abCANFrames [fusiOffset
"Api_CCrlCAN_DB" . sSEND. Data. abCANFrames [fusiOffset
"Api_CCrlCAN_DB" . sSEND. Data. abCANFrames [fusiOffset
"Api_CCrlCAN_DB" . sSEND. Data. abCANFrames [fusiOffset
"Api_CCrlCAN_DB" . sSEND. Data. abCANFrames [fusiOffset
"Api_CCrlCAN_DB" . sSEND. Data. abCANFrames [fusiOffset
"Api_CCrlCAN_DB" . sSEND. Data. abCANFrames [fusiOffset
"Api_CCrlCAN_DB" . sSEND. Data. abCANFrames [fusiOffset

N

N
N
N
N
N
N
N

"Api_CCrlCAN_DB" . sSEND. Data.abCANFrames [fusiOffset + #cOffset RIR],
"Api_CCrlCAN_DB". sSEND. Data.abCANFrames [#usiOffset + #cOffset DLCI,

#coftaet_Databytel],
#co£aet Databyte2],
#cortaet_Databytes],
#costaet Databyted],
#coszaet_Databytes],
#corzaet_Databyteé],
#cor£aet Databyte7],
#coszaet_Databytet]);

image18.png
2516
252
253
2540
255
256
257
252
259
260
261
262
26300
264
265
266
267
262
269
210
21
212
273
21
275
276
2n
278
2190
280
221
222
223
224
255
226
227
22
229
290
291
202

FOR #sileop

0 TO #sileopEnd DO

1/ get CAN-ID of the next CAN frame to be entered
CASE #CANI_SendList.CANIAList[#9iloop] OF

g
7/ demo example support:
/7 - cAN-Ta: 201m
DL LL L L LA AL L
168201: // CAN-ID 164201
// CAN frame with CAN-Td 201h shall be transmitted
/7 => call CAN_Id specific callback function
"Example_EnterCANFrame CANIA_201h" (CANIA_MSB => "Api_CtrlCAN_DB".SSEND.Data.abCANFrames(fusiOffset + fcOffsec_COBID MSB],
CANTQ_LSB => "Api_CorlCAN DB".sSEND.Data.abCANFranes (fusiOffset + $cOffsec_COBID_LSB],
RIR => "Api_CorlCAN DB".sSEND.Data.abCANFranes (fusiOffset + $cOffset RIR],

DataBytel
DataBytes

"Api_CCrlCAN_DB" . sSEND. Data. abCANFrames [fusiOffset
"Api_CCrlCAN_DB" . sSEND. Data. abCANFrames [fusiOffset

#cozzser_DataByreT],
#cozzser_DataByres])

DataByteSize => "Api_CcrlCAN DB.sSEND.Daca.abCANFrames [#usiOffset + #00ffset DICI,
DataBytel => "Api_CorlCAN DB .sSEND.Data.abCANFranes (fusiOffset + $cOffse_Databytel],
DataByte2 => "Api_CorlCAN DB".sSEND.Data.abCANFranes (fusiOffset + $cOffsec_DataByte?],
DataByte3 => "Api_CorlCAN DB".sSEND.Data.abCANFranes (fusiOffset + $cOffsec_DataBytes],
DataByted => "Api_CorlCAN DB".sSEND.Data.abCANFranes (fusiOffset + $cOffsec_DataByted],
DataBytes => "Api_CorlCAN DB".sSEND.Data.abCANFranes (fusiOffset + $cOffse_DataBytes],
DataBytes => "Api_CorlCAN DB".sSEND.Data.abCANFranes (fusiOffset + #cOffsec_DataBytes],

N

N

168201; // CAN-ID 164201
// CAN frame with CAN-Td 201h shall be transmitted
/7 => call CAN_Id specific callback function
FEntezCANFEane CANIA 234h" (CANIA MSB => "Api_CtrlCAN DB".sSEND.Date.abCANFrames[$usiOffset + #cOffset COBID MSB],
CANIG_LSB => "Api_CGrlCAN_DB". sSEND. Data.ebCANFrames [fusiOffset + $cOffset_COBID_LSB],
RIR => "Api_CtrlCAN DB".SSEND.Date.abCANFrames [#usiOffset + $Offact RTR],
DataByveSize => "Api CtrlCAN DB".SSEND.Date.abCANFrames[#usiOffset + $cOffaet DICI,
DataBytel => "Api_CGrlCAN_DB".sSEND. Data.ebCANFrames [fusiOffset + $cOffset_Databytell,
DataByve2 => "Api_CGrlCAN_DB".sSEND. Data.ebCANFrames [fusiOffset + $cOffset_DataByte2],
DataByte3 => "Api_CcrlCAN_DB".sSEND. Data.ebCANFrames [#usiOffset + $cOffset_DataByted],
DataByted => "Api_CerlCAN_DB".sSEND. Data.ebCANFrames[fusiOffset + $cOffset_DataByted],
"Api_CCrLCAN_DB" . 3SEND. Date.abCANFrames [fusiOffset + #cOffset_DataByteS],
+
.
.

Datayzes
DateByte6 => "Api_CorlCAN 08" . sSEND. Date. sbCANFrames [#usiOfaet + 4cOffaet_DataByves],
DataByte? => "pi_CorlCAN_DB".sSEND. Dat. abCANFrames [#usiOffaet + 4cOffaet_DataByte7],
DataBytes => "Api_CorlCAN_DB".sSEND. Data. abCNFrames [#usiOffaet + #cOffaet_DataByves]);.

ELSE // Statement section ELSE

image19.png
2516
252
253
2540
255
256
257
252
259
260
261
262
26300
264
265
266
267
262
269
210
21
212
273
21
275
276
2n
278
2190
280
221
222
223
224
255
226
227
22
229
290
291
202

FOR #silocp i

0 TO #siloopEnd DO

1/ get CAN-ID of the next CAN frame to be entered
CASE #CANI_SendList.CANIAList[#9iloop] OF

g

7/ demo example supports:
/7 - cAN-Ta: 201m

DL LL L L LA AL L

168201: // CAN-ID 164201

// CAN frame with CAN-Td 201h shall be transmitted

/7 => call CAN_Id specific callback function
"Exarple_EnterCANFrare CANIA_201h" (CANI_MSB
cantd 1ss
RIR

DataBytesize =

DataBytel

DataBytes =>

DataBytes
Datayted
DataBytes
DataBytes
DataBytel
DataBytes

7/ CAN-TD 168234

"Api_CCrlCAN_DB" . sSEND. Data.abCANFzames [#usiOffset + #cOffset_COBID MSB],
"hpi_CGrlCAN_DB". sSEND. Date.abCANFrames [#usiOffset + #cOffset COBID_LSBI,

"Api_CCrICAN_DB" . 3SEND. Data. abCANFrames [fusiOffset
"Api_CCrlCAN_DB" . sSEND. Data. abCANFrames [fusiOffset
"Api_CCrlCAN_DB" . sSEND. Data. abCANFrames [fusiOffset
"Api_CCrlCAN_DB" . sSEND. Data. abCANFrames [fusiOffset
"Api_CCrlCAN_DB" . sSEND. Data. abCANFrames [fusiOffset
"Api_CCrlCAN_DB" . sSEND. Data. abCANFrames [fusiOffset
"Api_CCrlCAN_DB" . sSEND. Data. abCANFrames [fusiOffset
"Api_CCrlCAN_DB" . sSEND. Data. abCANFrames [fusiOffset

// CAN frame with CAN-Td 234h shall be transmitted

7"

call CAN_Id specific callback function

N

N
N
N
N
N
N
N

"Api_CCrlCAN_DB" . sSEND. Data.abCANFrames [fusiOffset + #cOffset RIR],
"Api_CCrlCAN_DB". sSEND. Data.abCANFrames [#usiOffset + #cOffset DLCI,

#coftaet_Databytel],
#co£aet Databyte2],
#cortaet_Databytes],
#costaet Databyted],
#coszaet_Databytes],
#corzaet_Databyteé],
#cor£aet Databyte7],
#costaet_Databytet])

"EnterCANFrame CANI_234n" (CANIA_MSB => "Api_CtrlCAN DB".sSEND.Date.abCANFrames[$usiOffset + #cOffset COBID MSB],
"hpi_CCrICAN_DB" . sSEND. Data.abCANFrames [#usiOffset + #cOffset COBID_LSBI,

cantd 158
RIR

DataBytesize

DataBytel
DataByte2
DataBytes
Datayted
DataBytes
DataBytes =
DataBytel

DataBytes =>

ELSE // Statement section ELSE

"Api_CCrICAN_DB" . 3SEND. Data. abCANFrames [fusiOffset
"Api_CCrlCAN_DB" . sSEND. Data. abCANFrames [fusiOffset
"Api_CCrlCAN_DB" . sSEND. Data. abCANFrames [fusiOffset
"Api_CCrlCAN_DB" . sSEND. Data. abCANFrames [fusiOffset
"Api_CCrlCAN_DB" . sSEND. Data. abCANFrames [fusiOffset
"Api_CCrlCAN_DB" . sSEND. Data. abCANFrames [fusiOffset
"Api_CCrlCAN_DB" . sSEND. Data. abCANFrames [fusiOffset
"Api_CCrlCAN_DB" . sSEND. Data. abCANFrames [fusiOffset

N

N
N
N
N
N
N
N

"Api_CCrlCAN_DB" . sSEND. Data.abCANFrames [fusiOffset + #cOffset RIR],
"Api_CCrlCAN_DB". sSEND. Data.abCANFrames [#usiOffset + #cOffset DLCI,

#c0zzser_DataByrel],
#c0zzser_DataByte2],
#c0zzser_DataByres],
#c0zzser_DataByted],
#c0zzser_DataBytes],
#c0zzser_DataBytes],
#c0zzser_DataByte7],
#c0zzser_DataByred]);

image20.png
= [JUTUUUUUUUUyuuy
w5 UL

binking [200 [200
o) [T
off

binking

singe flash
()
of

single flash
lgreen)
off

doublefash ¢ 2001, 200 [200 e
(reg) [T s 7T e T e ™
i
L TR e
ool e s
o
wipe toen o200, [200] 200 [o007 o0 [oo 1000
oy [¢ T e e T e e ms
o
o =1 -
flash red) "
o

image1.png
HIS

