Error! Use the Home tab to apply Überschrift 1 to the text that you want to appear here.

Exchange of process image data

[bookmark: _Toc427636447]
	Application note

	CM CANopen

	Description of the CANopen demo

	

HMS Technology Center Ravensburg GmbH
Helmut-Vetter-Straße 2
88213 Ravensburg
Germany

Tel.: +49 751 56146-0
Fax: +49 751 56146-29
Internet: www.hms-networks.de
E-Mail: info-ravensburg@hms-networks.de

	

	Support
In case of unsolvable problems with this product or other HMS products please contact HMS in written form:

Fax: +49 751 56146-29
E-Mail: support@ixxat.de

Further international support contacts can be found on our webpage www.hms-networks.de

	

	Copyright
Duplication (copying, printing, microfilm or other forms) and the electronic distribution of this document is only allowed with explicit permission of HMS Technology Center Ravensburg GmbH. HMS Technology Center Ravensburg GmbH reserves the right to change technical data without prior announcement. The general business conditions and the regulations of the license agreement do apply. All rights are reserved.

	

	Registered trademarks
All trademarks mentioned in this document and where applicable third party registered are absolutely subject to the conditions of each valid label right and the rights of particular registered proprietor. The absence of identification of a trademark does not automatically mean that it is not protected by trademark law.

	

	Document number: X.XX.XXXX.XXXXX
Version: 1.0

[bookmark: _GoBack]1	Introduction	7
1.1	Restrictions	8
1.2	Related Documents	9
2	Hardware identifier of the CM module	10
2.1	TIA Portal V11 / V12	10
2.2	TIA Portal V13	11
2.3	TIA Portal V14	13
2.4	TIA Portal V15, V15.1	15
3	Overview of the CANopen demo	16
4	Exchange of process image data	17
4.1	General hints	17
4.2	Get Process Data In	21
4.2.1	Layout of the Process Image Input	22
4.2.1.1	Overview	22
4.2.1.2	Example: demo layout of “Process Image”	24
4.2.2	Adaption of the demo to the user`s application	28
4.2.3	Upload of the Process Image Input	31
4.3	Set Process Data Out	32
4.3.1	Layout of the Process Image Output	34
4.3.1.1	Overview	34
4.3.1.2	Example: demo layout of “Process Image”	36
4.3.2	Adaption of the demo to the user`s application	40
4.3.3	Hint: Update of the Process Image Output	43
4.3.3.1	Calculation of the minimum delay time	44
4.3.3.2	CANopen: transmission type of a PDO	45
4.3.3.3	Transmission type of a TPDO of the CM CANopen	47
4.3.3.4	Processing of the Process Image Output by the CM CANopen	48
4.3.3.4.1	Processing of TPDOs by the CM CANopen	49
5	SDO commands	51
5.1	General hints	51
5.1.1	Download of the Process Image Output	51
5.1.2	Use of SDOs	52
5.1.3	Processing of an SDO command	53
5.1.4	Data format	54
5.1.4.1	Example: data of Write SDO	55
5.1.4.2	Example: data of Read SDO	56
5.1.5	Parallel processed SDO commands	57
5.1.6	Application note: “CANopen Manager” mode	58
5.1.7	Application note: “CANopen slave” mode	59
5.1.7.1	Accessed CANopen device: CM CANopen	59
5.1.7.2	Accessed CANopen device: another device than the CM CANopen	61
5.2	SDO demo	62
5.3	SDO Read demo	64
5.3.1	Overview: SDO read demo	64
5.3.2	Adaption of the demo	66
5.3.2.1	Api_SDOReadMain FC / Api_SDORead_FB FB	66
5.3.2.2	the user constant "cSDORead_MaxDataSize"	66
5.3.2.3	Api_CheckRequestSDORead FC	67
5.3.2.4	Api_ProcessSDOReadResponse FC	69
5.3.3	Structure: "Ctrl_CM_CANopen".ReadSDO	71
5.4	SDO Write demo	72
5.4.1	Overview: SDO write demo	72
5.4.2	Adaption of the demo	74
5.4.2.1	Api_SDOWriteMain FC / Api_SDOWrite_FB FB	74
5.4.2.2	the user constant "cSDOWrite_MaxDataSize"	74
5.4.2.3	Api_CheckRequestSDOWrite FC	75
5.4.2.4	Api_ProcessSDOWriteResponse FC	78
5.4.3	Structure: "Ctrl_CM_CANopen".WriteSDO	79
6	Get Node & Network Status	80
6.1	Discussion of the diagnostic information	80
6.1.1	General hints	80
6.1.2	Get Node & Network Status: Message error	86
6.1.3	Get Node & Network Status: CANopen Module mode	86
6.1.4	Get Node & Network Status: Error flags (module)	87
6.1.5	Get Node & Network Status: Error flags (network)	89
6.1.6	Get Node & Network Status: CANopen Node Status	92
6.1.7	Get Node & Network Status: Network status	93
6.2	Overview: Get Node & Network Status demo	97
6.3	Adaption of the demo	99
6.3.1	GetNodeNetworkStatusMain [FC18]	99
6.3.2	the user constant “cHighOffset_GetNNStatusRecord“	100
6.3.3	Api_AnalyseNodeNetworkStatus FC	101
6.4	Structure: "Ctrl_CM_CANopen".GetNNStatus	103
7	Revised library	104
7.1	CANopen mode	104
7.1.1	Data type: “SDO_ReadData”	105
7.1.2	Data type: “SDO_WriteData”	105
7.1.3	Description of ReadSDO [FB104]	106
7.1.4	Description of WriteSDO [FB105]	109
7.2	Transparent CAN mode	112
7.2.1	Data type: “FCN_1_CANIDList”	113
7.2.2	Data type: “CANFrames”	114
7.2.3	Description of CAN_CTRL [FB1]	117
7.2.4	Description of CAN_RCV FB	121
7.3	CAN_SEND FB	124
7.3.1	Parameters of CAN_SEND FB	125
7.4	SendReceiveErrorCode FC	128
8	CM CANopen Configuration Studio	130
8.1	Exchange of process image data	130
8.2	“Device Parameters”	132
9	Status LEDs	134
9.1	Indicator states and flash rates	135

Content

Content

	Copyright IXXAT Automation GmbH
	4
	Produktname-Handbuch, Version

	Copyright HMS Technology Center Ravensburg GmbH
	4
	CM CANopen, CANopen Application, V1.0

[bookmark: _Toc32411252]Introduction
The demo explains
	how to communicate
with one CM CANopen running in CANopen mode
· to exchange process image data
· to process SDO Read / Write
· to process Get Node & Network Status

The demo must be enhanced
· if the PLC shall communicate with several CM CANopen devices

Hint: library
· the CANopen demo is based on a new library
· the interface of the CANopen interface function blocks
	differs from the description
		in the user manual of the CM CANopen
· the new library is described by chapter:
 		Revised library

[bookmark: _Toc32411253]Restrictions

The CM CANopen supports CAN 2.0A (11 bit CAN identifier) but it does not support CAN 2.0B (29 bit CAN identifier).

“CANopen Manager auto configuration”:
· must not be activated
	in the device configuration of the CM CANopen in TIA Portal
· the mechanism has not been defined to inform the application about the auto generated configuration

The CM CANopen does not support bit mapping:
· contact support if it is possible that the single bits can be mapped in bytes

Hint:
· the CM CANopen may lose CAN frames received from the CAN bus
	if the CAN baudrate is higher than 250kBaud
.

[bookmark: _Toc32411254]Related Documents

	Document name
	Author

	CM CANopen - User Manual.pdf
Rev 1.00
	HMS

	
	

	
	

	
	

[bookmark: _Toc32411255]Hardware identifier of the CM module
The hardware identifier is needed by
· the used RDREC instance to process “Get Process Data In”
	=> input ID of RDREC
· the used RDREC instance to process “Get Node & Network Status”
	=> input ID of RDREC
· the used WRREC instance to process “Set Process Data Out”
	=> input ID of WRREC
· the instances of ReadSDO FB / WriteSDO FB
	=> input ID of ReadSDO FB / WriteSDO FB
to address the CM CANopen module.

[bookmark: _Toc32411256]TIA Portal V11 / V12
The hardware identifier of the CM CANopen module is provided by the hardware configuration of the CM CANopen module.

[image:]
[bookmark: _Toc32411257]TIA Portal V13
The hardware identifier of the CM CANopen module is provided by the hardware configuration of the CM CANopen module.

[image:]

Alternatively:
TIA Portal V13 also provides a system constant that is provided by:
	hardware configuration of the CM CANopen module / System constants

[image:]

[bookmark: _Toc32411258]TIA Portal V14
The hardware identifier of the CM CANopen module is provided by the hardware configuration of the CM CANopen module.

[image:]

Alternatively:
TIA Portal V14 also provides a system constant that is provided by:
	PLC tags / Show all tags / System constants

[image:]

“Local~CM_CANopen_1” is the hardware identifier of the CM module with the name:
	CM CANopen_1
Its data type must be Port.

[bookmark: _Toc32411259]TIA Portal V15, V15.1
Siemens has removed the hardware identifier of the CM CANopen module from the hardware configuration of the CM module.
The hardware identifier of the CM CANopen module can be found in:
	PLC tags / Show all tags / System constants

Device configuration:
[image:]

Hardware Id of the CM module: CM CANopen_1

[image:]

“Local~CM_CANopen_1” is the hardware identifier of the CM module with the name:
	CM CANopen_1
Its data type must be Port.

[bookmark: _Toc32411260]Overview of the CANopen demo

Description of OB1:
Network 1:
		demo for “Get Node & Network Status”

Network 2:
		demo for “Get Process Data In”
		=> upload of process image input data

Network 3:
		demo for “Set Process Data Out”
		=> download of process image output data

Network 4:
		demo for “SDO Read”

Network 5:
		demo for “SDO Write”

Description of OB30:
OB30 cyclically (all 500ms) requests the processing of “Get Node & Network Status”

[bookmark: _Toc32411261]Exchange of process image data
[bookmark: _Toc32411262]General hints

The process image
· is not exchanged via the process image area of the PLC
· is read by RDREC / written by WRREC

The process image
· is read / written as a byte array
· from offset 0 up to offset x
	=> each byte within this range is transferred

· process image input:
· offset 0 	Address 0 of Direction: IN
		 of the Process Image of the Configuration Studio
· x + 1 = minimum of
		 MLEN input of RDREC
	 and
		 “CANopen input data size”
		 	of the device configuration of the CM CANopen
 		 	in TIA Portal

· process image output:
· offset 0 	Address 0 of Direction: OUT
		 of the Process Image of the Configuration Studio
· x + 1 = minimum of
		 LEN input of WRREC
	 and
		 “CANopen output data size”
		 	of the device configuration of the CM CANopen
 		 	in TIA Portal

Arrangement of the data in the exchanged byte arrays:
· the meaning of the individual bytes of the exchanged byte arrays is determined by the layout of the process image in the CM CANopen Configuration Studio

· CM CANopen Configuration Studio / Process Image:
	Address of an object = (start) offset in the exchanged byte array

Data format of the read / written values:
· is little endian (CANopen format)

Examples:
· 8 bit value with Address x in the process image:
· offset x of the byte array:
 	=> transfers the value

· 16 bit value with Address x in the process image:
· offset x of the byte array:
 	=> transfers the least significant byte of the value
· offset (x + 1) of the byte array
 	=> transfers the most significant byte of the value

· e.g.: value = 16#1234
	=> offset x:
		16#34 least significant byte
	=> offset (x + 1):
		16#12 most significant byte

· 32 bit value with Address x in the process image:
· offset x of the byte array:
 	=> transfers the least significant byte of the value
· offset (x + 1) of the byte array
 	=> transfers the next more significant byte of the value
· offset (x + 2) of the byte array
 	=> transfers the next more significant byte of the value
· offset (x + 3) of the byte array
 	=> transfers the most significant byte of the value

· e.g.: value = 16#12345678
	=> offset x:
		16#78 least significant byte
	=> offset (x + 1):
		16#56 next more significant byte
	=> offset (x + 2):
		16#34 next more significant byte
	=> offset (x + 3):
		16#12 most significant byte

Conditions: exchange of process image data with the CANopen network:
· the CM CANopen neither receives nor transmits PDOs if it is not operational
· there is an additional condition for the CM CANopen running in CANopen Manager mode:
· minimum one slave device must be operational
· otherwise the CM CANopen will not transmit any TPDO
· the information which slaves are operational is provided by
· “Get Node & network Status”
	see 	chapter 8.1.4 Get Node & Network Status
 		of the CM CANopen manual

Default value of the process image:
· Each byte of the input and output area is initialized with 0 after power on.

Tip: 	data exchanged with the CM CANopen
 	data of the application
· we recommend the use of different data areas:
 	=> for data exchange between the PLC and the CM CANopen
	=> with which the application works
· so that the data is consistent
· the transmission of the asynchronous telegrams requested by RDREC / WRREC is not deterministic
· so that the data of the application is always available in the data format of the PLC
· the data format of the PLC is big endian
whereas the data format of the data exchanged with the CM CANopen is little endian

Performance:
The best performance is reached
· process image input:
· CANopen input data size = MLEN = actual size

· CANopen input data size:
=> hardware configuration of the CM module in TIA Portal
 => Module parameters
	 => CANopen input data size
· MLEN:
=> MLEN input of RDREC
 	which is used to upload the process image input
· actual size:
=> byte size of the process image input
	that covers all mapped data
 see CM CANopen Configuration Studio:
 	“Process Image”: Direction: IN

· more details are provided by:
	chapter 4.2.1

· process image output
· CANopen output data size = LEN = actual size

· CANopen output data size:
=> hardware configuration of the CM module in TIA Portal
 => Module parameters
	 => CANopen output data size
· LEN:
=> LEN input of WRREC
 	which is used to download the process image output
· actual size:
=> byte size of the process image output
	that covers all mapped data
 see CM CANopen Configuration Studio:
 	“Process Image”: Direction: OUT

· more details are provided by:
	chapter 4.3.1

[bookmark: _Toc32411263]Get Process Data In

Program group "Get Process Data In" provides all functionality
· to process the upload of the process image input from the CM CANopen
· to update and convert the data for the PLC / application

Hint: the demo uploads the process image as a structure
· a structure is clearer and less error prone
· a structure is much easier to adapt to later changes

The process image input data is handled by:
· the structure “PIInput_CANopen”

· the user constant "cByteSize_Struct_PIInput_CANopen"
· keeps the byte size of the structure "PIInput_CANopen"

· hint: MLEN input of RDREC used to read the process image input
· MLEN := "cByteSize_Struct_PIInput_CANopen"

· “CANopenProcessImage“.Input.CANopen
· the read data from the CM CANopen are copied to this area by RDREC
· data type: “PIInput_CANopen”
· data format of the values: little endian

· “CANopenProcessImage“.Input.Application
· this area provides the read and converted data for the application
· data type: “PIInput_CANopen”
· data format of the values: big endian

· Hint:
· CANopenProcessImage DB shall not be optimized!

· GetProcessDataIn FC
· processes the upload of the process image input from the CM CANopen
· calls Api_UpdatePIInData FC
	that updates the process image input data of the application

· Api_UpdatePIInData FC
· converts the read data to big endian
· updates the input data of the application
[bookmark: _Ref477797358][bookmark: _Ref477797479][bookmark: _Ref11312848][bookmark: _Toc32411264]Layout of the Process Image Input

This chapter describes the relationship between the assignment of the process image input in the CM CANopen Configuration Studio and its implementation as a structure in the TIA Portal.

[bookmark: _Toc32411265]Overview

The process image input
· is read as a byte array
· from offset 0 up to offset x
	=> each byte within this range is transferred
· x = minimum of 	MLEN input of RDREC
 and 	“CANopen input data size” of the device
 	configuration of the CM CANopen in TIA Portal

· the assignment of the byte array depends on
the layout of “Process Image: Direction: IN” in Configuration Studio
· Address of an object = (start) offset in the byte array

· the data format of the read values is little endian

Minimum byte size that covers all mapped data of “Direction: IN”:
· minimum byte size =	highest Address of “Direction: IN”
			 + 	the byte size of the object
				at the highest Address of “Direction: IN”

· consequences: TIA Portal
· device configuration of the CM CANopen:
	=> “CANopen input data size” >= minimum byte size
· MLEN input of RDREC
· MLEN >= “CANopen input data size”
· MLEN <= byte size of the byte array / structure

· best performance:
	“CANopen input data size” = MLEN = minimum byte size

Dummy bytes:
· the read process image input can contain bytes that do not carry data
· “dummy bytes" are bytes that are transferred although they do not carry data
· dummy bytes must be ignored by the TIA application

· hint:
· objects can only be mapped to an address that is an integer multiple of the byte size of the object
· each byte within the transferred range is transmitted

· it must be checked if dummy bytes must be added to the structure

How do you find out if a dummy byte has to be inserted?
Adaption of the PI input structure to "Process Image: Direction: IN"
Start with Address 0 of “Direction: IN”
· is the Address listed in “Direction: IN”?
· yes 	 an object is mapped to this address
· enter the object in the structure with its data type
· next Address that must be checked:
next Address = current Address + the byte size of the object
· no 	 no object is mapped to this address
	 => a dummy byte must be entered
· enter a dummy byte object - data type: Byte - in the structure
· next Address that must be checked:
next Address = current Address + 1

· repeat this check until the object with the highest Address of “Direction: IN” has been entered in the structure

· hint: order of the objects in the structure
· the objects are entered in the structure according to their ascending address

· check if the definition of the structure is correct:
· compile the complete software
· the offset of a mapped object in the structure and its Address in "Process Image: Direction: IN" must be the same
[bookmark: _Toc32411266]Example: demo layout of “Process Image”

This chapter describes how “Process Image: Direction: IN” of the CM CANopen Configuration Studio is mapped to a process image input structure in the TIA Portal.

demo layout of “Process Image” in CM CANopen Configuration Studio:

[image:]

Relationship: 	“Process Image: Direction: IN”
			 Assignment of the byte array
			 Description of the process image input as a
 			 structure in TIA Portal

	Byte Array:
Offset
	Address
	Object
	Byte Size
	Structure
used in TIA Portal

	
	
	Node-ID
	Index
	Sub-Index
	
	

	0
	00000000
	1
	1001
	00
	1
	N1_ErrorRegister

	1
	00000001
	1
	6000
	01
	1
	N1_DigitalIn_1

	2
	00000002
	1
	6000
	02
	1
	N1_DigitalIn_2

	3
	00000003
	2
	1001
	00
	1
	N2_ErrorRegister

	4
	00000004
	2
	6000
	01
	1
	N2_DigitalIn_1

	5
	unused
	1
	Dummy_Byte5

	6
	00000006
	1
	6401
	01
	2
	N1_AnalogIn_1

	7
	
	
	
	
	
	

	8
	00000008
	2
	6401
	01
	2
	N2_AnalogIn_1

	9
	
	
	
	
	
	

	10
	unused
	1
	Dummy_Byte10

	11
	unused
	1
	Dummy_Byte11

	12
	0000000C
	1
	2000
	00
	4
	N1_StatusRegister

	13
	
	
	
	
	
	

	14
	
	
	
	
	
	

	15
	
	
	
	
	
	

	16
	00000010
	2
	6404
	01
	4
	N2_AnalogInFloat_1

	17
	
	
	
	
	
	

	18
	
	
	
	
	
	

	19
	
	
	
	
	
	

	20
	
free space of the process image input that does not carry data

	…
	

	255 (max)
	

Notation:
· Byte Array: Offset
	description of the process image input as a byte array
· Address, Node-ID, Index und Sub-Index
 	correspond to the same-named columns of the process image in
 	the CM CANopen Configuration Studio	
· Byte Size: byte size of the mapped object Size (bit) / 8
· Nx Node-ID x
· Structure used in TIA Portal
	description of the process image input as a structure

corresponding process image input structure:

[image:]

Corresponding process image input areas:

[image:]
“CANopenProcessImage“.Input.CANopen
· the read data from the CM CANopen are copied to this area by RDREC
· its data format is little endian

“CANopenProcessImage“.Input.Application
· this area provides the read and converted data for the application
· its data format is big endian

Check if the data field correctly reflects the assignment of “Process Image: Direction: IN”:
· each mapped object of "Process Image: Direction: IN" must be entered with its data type (at least the byte size must be correct) in the structure

· the offset of a mapped object in the structure and its Address in "Process Image: Direction: IN" must be the same

· e.g.: "CANopenProcessImage".Input.Application.PIIn.N2_AnalogIn_1
· "Process Image: Direction: IN"
· Analogue Input (Integer 16) 1 Index 6401, Sub-Index 1
of Node-Id: 2
=> Address: 00000008h
· offset of the object in its structure
· offset of the object in CANopenProcessImage" DB:
	=> 28.0
· offset of its structure CANopenProcessImage".Input.Application
	=> 20.0
· offset of the object in its structure:
	=> 28.0 – 20.0 = 8 Address: 00000008h

[bookmark: _Toc32411267]Adaption of the demo to the user`s application

The adaption of the demo consists of the following steps:

1. adaption of the process image input structure

the structure
	”PIInput_CANopen”
		see PLC data types / CANopen
must be adapted to the layout of
	“Process Image: Direction: IN”
in the CM CANopen Configuration Studio

=> remove the entries of the demo
=> enter the mapped objects
	and dummy bytes if necessary
=> see chapter 4.2.1

2. adaption of "cByteSize_Struct_PIInput_CANopen"

the user constant "cByteSize_Struct_PIInput_CANopen"
		see PLC tags / Show all tags / User constants
must be adapted to the byte size of the structure ”PIInput_CANopen”

"cByteSize_Struct_PIInput_CANopen" = byte size of the structure
 							 ”PIInput_CANopen”

hint:
· in any case, it must be avoided that the read process image input data unintentionally overwrite other data
· it must be ensured that the data of all mapped objects is read

· "cByteSize_Struct_PIInput_CANopen" is used
· to control MLEN input of RDREC that is used to read the process image input
	see GetProcessDataIn FC
· to avoid the above problems

3. adaption of Api_UpdatePIInData [FC2]

Api_UpdatePIInData FC
· is called by GetProcessDataIn FC
when the process image input is read from the CM CANopen
· updates the process image input data that the application is working with

· “CANopenProcessImage“.Input.CANopen
· provides the process image input data that are read from the CM CANopen
· data type of the values: little endian

· “CANopenProcessImage“.Input.Application
· provides the read and converted data for the application
· data type of the values: big endian

· adaption
· remove or comment out the update of the demo objects
· add the update of the process image input objects
· 16 bit (2 byte) / 32 bit (4 byte) objects must be swapped

· hint: data type: Real
	swapping of a Real variable does not work reliably

1. convert the Real variable to a DWord variable
2. swap the DWord variable
3. Convert the DWord variable to the final Real variable
=> add the update of the process image input objects

· dummy bytes must not be updated:
 	they do not carry data

4. adaption of “CANopen input data size” of the device configuration of the CM CANopen

best performance / least problems:
“CANopen input data size” = "cByteSize_Struct_PIInput_CANopen"

[image:]

Hint:
· GetProcessDataIn FC main function of the upload
· GetProcessDataIn FC must not be modified by the customer

· ProcessImageData DB DB for the process image data
· this DB shall not be optimized

[image:]

[bookmark: _Toc32411268]Upload of the Process Image Input

GetProcessDataIn FC must be called at least once per OB1 cycle.

[bookmark: _Toc32411269]Set Process Data Out

Program group "Get Process Data Out" provides all functionality
· to process the download of the process image output to the CM CANopen
· to update and convert the data that are written to the CM CANopen

Hint: the demo downloads the process image as a structure
· a structure is clearer and less error prone
· a structure is much easier to adapt to later changes

The process image output data is handled by:
· the structure “PIOutput_CANopen”

· the user constant "cByteSize_Struct_PIOutput_CANopen"
· keeps the byte size of the structure "PIOutput_CANopen"

· hint: LEN input of WRREC that is used to write the process image output
· LEN := "cByteSize_Struct_PIOutput_CANopen"

· "CANopenProcessImage".Output.Application
· this data area provides the process image output data with which the application works
· data type: “PIOutput_CANopen”
· data format of the values: big endian

· “CANopenProcessImage“.Output.CANopen
· this data area provides the process image output data that is written to the CM CANopen
· data type: “PIOutput_CANopen”
· data format of the values: little endian

· Hint:
· CANopenProcessImage DB shall not be optimized!

· SetProcessDataOut FC
· processes the requested download of the process image output to the CM CANopen
· calls Api_UpdatePIOutData FC
	that updates the process image output data
	that will be written to the CM CANopen

· Api_UpdatePIOutData FC
· updates the process image output data that will be written to the CM CANopen
· the updated data are converted to the data format of CANopen

· "Ctrl_CM_CANopen".SetPIOut
· this structure controls the download of the process image through the function SetProcessDataOut

· "Ctrl_CM_CANopen".SetPIOut.fUpdateData
· state machine of SetProcessDataOut FC
· the state machine is completely and independently managed by SetProcessDataOut FC

· "Ctrl_CM_CANopen".SetPIOut.fReq
· this flag is connected with REQ InOut parameter of 	SetProcessDataOut FC
· it controls the execution of a download of the process image output
· at the same time: it informs the application
whether SetProcessDataOut FC is available for a new download

[bookmark: _Ref477797518][bookmark: _Toc32411270]Layout of the Process Image Output

This chapter describes the relationship between the assignment of the process image output in the CM CANopen Configuration Studio and its implementation as a structure in the TIA Portal.

[bookmark: _Toc32411271]Overview

The process image output
· is written as a byte array
· from offset 0 up to offset x
	=> each byte within this range is transferred
· x = minimum of 	LEN input of WRREC
 and 	“CANopen output data size” of the device
 	configuration of the CM CANopen in TIA Portal

· the assignment of the byte array depends on
the layout of “Process Image: Direction: OUT” in Configuration Studio
· Address of an object = (start) offset in the byte array

· the data format of the written values is little endian

Minimum byte size that covers all mapped data of “Direction: OUT”:
· minimum byte size =	highest Address of “Direction: OUT”
			 + 	the byte size of the object
				at the highest Address of “Direction: OUT”

· consequences: TIA Portal
· device configuration of the CM CANopen:
	=> “CANopen output data size” >= minimum byte size
· LEN input of WRREC
· LEN <= “CANopen output data size”
· LEN <= byte size of the byte array / structure

· best performance / least problems:
	“CANopen output data size” = LEN = minimum byte size

Dummy bytes:
· the process image output can contain bytes that do not carry data
· “dummy bytes" are bytes that are transferred although they do not carry data

· hint:
· objects can only be mapped to an address that is an integer multiple of the byte size of the object
· each byte within the transferred range is transmitted

· it must be checked if dummy bytes must be added to the structure

How do you find out if a dummy byte has to be inserted?
Adaption of the PI output structure to "Process Image: Direction: OUT"
Start with Address 0 of “Direction: OUT”
· is the Address listed in “Direction: OUT”?
· yes 	 an object is mapped to this address
· enter the object in the structure with its data type
· next Address that must be checked:
next Address = current Address + the byte size of the object
· no 	 no object is mapped to this address
	 => a dummy byte must be entered
· enter a dummy byte object - data type: Byte - in the structure
· next Address that must be checked:
next Address = current Address + 1

· repeat this check until the object with the highest Address of “Direction: OUT” has been entered in the structure

· hint: order of the objects in the structure
· the objects are entered in the structure according to their ascending address

· check if the definition of the structure is correct:
· compile the complete software
· the offset of a mapped object in the structure and its Address in "Process Image: Direction: OUT" must be the same

[bookmark: _Toc32411272]Example: demo layout of “Process Image”

This chapter describes how “Process Image: Direction: OUT” of the CM CANopen Configuration Studio is mapped to a process image output structure in the TIA Portal.

demo layout of “Process Image” in CM CANopen Configuration Studio:

[image:]

Relationship: 	“Process Image: Direction: OUT”
			 Assignment of the byte array
			 Description of the process image output as a
 			 structure in TIA Portal

	Byte Array:
Offset
	Address
	Object
	Byte
Size
	Structure
used in TIA Portal

	
	
	Node-ID
	Index
	Sub-Index
	
	

	0
	00000000
	1
	6200
	01
	1
	N1_DigitalOut_1

	1
	00000001
	1
	6200
	02
	1
	N1_DigitalOut_2

	2
	00000002
	2
	6200
	01
	1
	N2_DigitalOut_1

	3
	00000003
	2
	6200
	02
	1
	N2_DigitalOut_2

	4
	00000004
	1
	6411
	01
	2
	N1_AnalogOut_1

	5
	
	
	
	
	
	

	6
	00000006
	1
	6411
	02
	2
	N1_AnalogOut_2

	7
	
	
	
	
	
	

	8
	00000008
	2
	6411
	01
	2
	N2_AnalogOut_2

	9
	
	
	
	
	
	

	10
	Unused
	1
	Dummy_Byte10

	11
	Unused
	1
	Dummy_Byte11

	12
	0000000C
	1
	6413
	01
	4
	N1_AnalogOutFloat_1

	13
	
	
	
	
	
	

	14
	
	
	
	
	
	

	15
	
	
	
	
	
	

	16
	
free space of the process image output that does not carry data

	…
	

	255 (max)
	

Notation:
· Byte Array: Offset
	description of the process image output as a byte array
· Address, Node-ID, Index und Sub-Index
 	correspond to the same-named columns of the process image in
 	the CM CANopen Configuration Studio	
· Byte Size: byte size of the mapped object Size (bit) / 8
· Nx Node-ID x
· Structure used in TIA Portal
	description of the process image output as a structure

corresponding process image output structure:

[image:]

Corresponding process image output areas:

[image:]

“CANopenProcessImage“.Output.Application
· process image output data with which the application works
· its data format is big endian

“CANopenProcessImage“.Output.CANopen
· process image output data that is written to the CM CANopen
· its data format is little endian

Check if the data field correctly reflects the assignment of “Process Image: Direction: OUT”:
· each mapped object of "Process Image: Direction: OUT" must be entered with its data type (at least the byte size must be correct) in the structure

· the offset of a mapped object in the structure and its Address in "Process Image: Direction: OUT" must be the same

· e.g.: "CANopenProcessImage".Output.Application.PIOut.N1_AnalogOutFloat_1

· "Process Image: Direction: OUT"
· Analogue Output Float 1 Index 6413, Sub-Index 1
of Node-Id: 1
=> Address: 0000000Ch

· offset of the object in its structure
· offset of the object in CANopenProcessImage" DB:
	=> 68.0
· offset of its structure "CANopenProcessImage".Output.Application
	=> 56.0
· offset of the object in its structure:
	=> 68.0 – 56.0 = 12 Address: 0000000Ch

[bookmark: _Toc32411273]Adaption of the demo to the user`s application

The adaption of the demo consists of the following steps:

1. adaption of the process image output structure

the structure
	“PIOutput_CANopen”
		see PLC data types / CANopen
must be adapted to the layout of
	“Process Image: Direction: OUT”
in the CM CANopen Configuration Studio

=> remove the entries of the demo
=> enter the mapped objects
	and dummy bytes if necessary
=> see chapter 4.3.1

2. adaption of "cByteSize_Struct_PIOutput_CANopen"

the user constant "cByteSize_Struct_PIOutput_CANopen"
		see PLC tags / Show all tags / User constants
must be adapted to the byte size of the structure “PIOutput_CANopen”

"cByteSize_Struct_PIOutput_CANopen" = byte size of the structure
 							 “PIOutput_CANopen”

hint:
· in any case, it must be avoided that invalid data is unintentionally written to the CM CANopen
· it must be ensured that the data of all mapped objects are written

· "cByteSize_Struct_PIOutput_CANopen" is used
· to control LEN input of WRREC that is used to write the process image output to the CM CANopen
	see SetProcessDataOut FC
· to avoid the above problems

3. adaption of Api_UpdatePIOutData [FC4]

Api_UpdatePIOutData FC
· is called by SetProcessDataOut FC
before the process image output is written to the CM CANopen
· updates the process image output data that is written to the CM CANopen by WRREC

· "CANopenProcessImage".Output.Application
· provides the process image output data with which the application works
· data type of the values: big endian

· “CANopenProcessImage“.Output.CANopen
· updated and converted process image output that is written to the CM CANopen by WRREC
· data type of the values: little endian

· adaption
· remove or comment out the update of the demo objects
· add the update of the process image output objects
· 16 bit (2 byte) / 32 bit (4 byte) objects must be swapped

· hint: data type: Real
	swapping of a Real variable does not work reliably

1. convert the Real source variable to a DWord variable
2. swap the DWord variable
3. Convert the DWord variable to the Real destination
 variable

· dummy bytes must not be updated:
 	they do not carry data

4. adaption of “CANopen output data size” of the device configuration of the CM CANopen

best performance / least problems:
“CANopen output data size” = “cByteSize_Struct_PIOutput_CANopen"

[image:]

Hint:
· SetProcessDataOut FC main function of the upload
· SetProcessDataOut FC must not be modified by the customer

· ProcessImageData DB DB for the process image data
· this DB shall not be optimized

[image:]

[bookmark: _Toc32411274]Hint: Update of the Process Image Output

This chapter discusses the transfer of output data that shall not be overwritten before it is sent.

It essentially concerns the transmission of asynchronous / synchronous acyclic TPDOs of the CM CANopen:
· see chapter:
a)	CANopen: transmission type of a PDO
b) 	Transmission type of a TPDO of the CM CANopen

Hint: “Set Process Data Out” (see manual of the CM CANopen)
· “Set Process Data Out”
· informs
	that the data has been written to the CM CANopen
· but does not inform
 	if the data has been processed / transmitted to the
 	CANopen network
· see chapter:
 	Processing of the Process Image Output by the CM CANopen

Delay time between updating data that should not be overwritten before it has been sent:
· data that are transferred by asynchronous TPDOs of the CM CANopen
· see chapter:
	Calculation of the minimum delay time
· data that are transferred by synchronous TPDOs of the CM CANopen
· minimum delay time > sync cycle time
· hint:
· the sync mechanism of CANopen and the processing of the process image between the PLC and the CM CANopen are not synchronized

[bookmark: _Ref11738083][bookmark: _Toc32411275]Calculation of the minimum delay time

The minimum delay time of an update of output data that shall not be overwritten before it is sent depends of the CAN bus load:
· the frequency of the transmission of each CAN frame
· the transmission of asynchronous TPDOs of the slaves
	that are not controlled by an inhibit time
=> cannot be predicted
· the transmission of NMT commands, SDO telegrams and emergency messages
=> cannot be predicted
· the bit size of the transmitted CAN frames
· hint:
· the delay time is mainly determined by message bursts
· CANopen recommends that the average bus load does not exceed 55%

Transmission time of a CAN frame:
The transmission time of a CAN frame depends of
· its bit size:
· 47 bits + 8 bits * number of data bytes of the CAN frame
· hint:
	an additional stuff bit is automatically inserted after
	a sequence of 5 equal bits
· the CAN baudrate

· e.g.: a CAN frame with 8 data bytes
· bit size = 47 bits + 8 * 8 bits = 111 bits
· CAN baud rate: 125 kbit / sec
 => bit time = 8µs / bit
· transmission time:
=> without stuff bits
 	transmission time	= bit size * bit time
 	= 111 bits * 8µs / bit = 888µs
=> with maximum stuff bits
 	transmission time	<= bit size * bit time * 1,2
 	<= 111 bits * 8µs / bit * 1,2 = 1067µs

A rough estimate of the minimum delay time:
· calculate the sum over the bit size
· of all enabled PDOs (enabled TPDOs and RPDOs)
 	of all slaves in the CM CANopen Configuration Studio

· of the heartbeat / guarding messages
 	of all slaves and the CM CANopen

a heartbeat message consists of 55 bits (without stuff bits)

· calculate the transmission time of the calculated bit sum with stuff bits
· calculate the transmission time that generates 55% bus load
· e.g.: 	calculated bit sum:	without stuff bits: 	2500bits
					with stuff bits:	3000bits
	CAN baudrate: 		125 kbit / sec
					=> bit time = 8µs / bit
	
=> transmission time of the calculated bit sum with stuff bits:
	=> transmission time = 3000bits * 8µs / bit = 24ms
=> transmission time that generates 55% average bus load
	=> transmission time = transmission time * 100% / 55%
 = 24ms * 100% / 55% = 43,6ms

· roughly estimated minimum delay time:
	minimum delay time ~ 	transmission time
					that generates 55% average bus load

[bookmark: _Toc8297681][bookmark: _Ref11738216][bookmark: _Ref11738341][bookmark: _Toc32411276]CANopen: transmission type of a PDO

Overview: Transmission Type

	CANopen
	CM CANopen Configuration Studio

	
	Transmission Type
	No of Sync

	transmission type 0
	Synchronous (acyclic)
	-

	transmission type 1 - 240
	Synchronous (cyclic)
	CANopen:
 transmission type

	transmission type 254
	Event-driven (manufacturer-specific)
	-

	transmission type 255
	Event-driven
(profile specific)
	-

Synchronous transmission types:
· Synchronous RPDO 		 CANopen: transmission type 0 - 240
· the data of a received synchronous RPDO is updated / processed by the reception of the next sync message

· Synchronous (acyclic) TPDO 	 CANopen: transmission type 0
· the TPDO is exclusively transmitted after the reception of a sync message
		if its data has changed

· Synchronous (cyclic) TPDO 	 CANopen: transmission type 1 - 240
· the TPDO is exclusively transmitted after the reception of every “transmission type”th sync message

Asynchronous transmission types: Event-driven
· asynchronous RPDO 	 CANopen: transmission type 254 - 255
· the data of a received asynchronous RPDO is updated immediately

· asynchronous TPDO	 CANopen: transmission type 254 - 255
· Event-driven (manufacturer-specific) transmission type 254
· it includes the transmission type 255
· but the manufacturer has implemented additional device specific trigger conditions

· trigger condition for the transmission of the TPDO:
· data of the TPDO has changed
· the event timer of the TPDO (if supported and not 0) has elapsed
· an asynchronous TPDO must not be transmitted until its inhibit time (if supported and not 0) has elapsed

Hint: Inhibit Time of an asynchronous TPDO
· the inhibit time defines a minimum delay between subsequent transmission of the TPDO
· the inhibit time should be used for asynchronous TPDOs that transfer data that changes at a high frequency (e.g.: analogous or real values)
· to reduce the generated bus load
 each change of the transferred data triggers the transmission

such TPDOs
· can flood the CAN bus
· block the transmission of CAN messages with a lower priority
	e.g.: heartbeat / SDO messages
 	 TPDOs with a lower priority
that can lead to serious disorders of the CANopen network
e.g.:
	the CM CANopen detects “Error Control Events”
	CANopen devices will run into a “Transmit Queue Overrun”
· hint:
· such TPDOs
	that cannot be controlled by the inhibit time
 	and that data cannot be controlled by a delta value
should be configured as synchronous acyclic

[bookmark: _Ref11738398][bookmark: _Toc32411277]Transmission type of a TPDO of the CM CANopen

The transmission type of a TPDO of the CM CANopen
	 is fixed by / is identical with
the transmission type of the corresponding RPDO of a slave
	in CM CANopen Configuration Studio

Hint:
· a TPDO is transmitted according its configured transmission type
	regardless of
whether the recipient of the TPDO is connected and operational

[bookmark: _Ref8285996][bookmark: _Toc8297692][bookmark: _Ref11737950][bookmark: _Toc32411278]Processing of the Process Image Output by the CM CANopen

The processing of the process image output by the CM CANopen consists of 2 buffers
· PLC process image output:
		the process image data that is received from the PLC
		is copied to this buffer
hint:
· “Set Process Data Out” (see manual of the CM CANopen)
· informs that the data has been written to this buffer
· does not inform
	if the data has been processed / transmitted to the
 	CANopen network		
· each received process image output from the PLC overwrites the data in this buffer

· CANopen process image output:
		this buffer provides the data
		that is transmitted by TPDOs to the CANopen network
so the transmitted data are consistent / based on the same set of data

Description of the procedure:
1. Start of a new cycle of the processing of the process image output
=> the data of the
	PLC process image output buffer
 is copied to the
	CANopen process image output buffer
=> continue with step 2.

2. Processing of the CANopen process image output buffer
=> when the CANopen process image output buffer has been processed
 	continue with step 1.

[bookmark: _Toc32411279]Processing of TPDOs by the CM CANopen

The processing of TPDOs depends of the transmission type:

· synchronous TPDOs
=> are immediately processed after the reception of the sync message
=> are immediately entered (if the TPDO is to be sent)
	into the synchronous transmission FIFO
 with the data of the CANopen process image output buffer

the synchronous transmission FIFO
=> has a higher priority than the standard transmission FIFO
 => the synchronous transmission FIFO is processed first
	 => the standard transmission FIFO is processed
 		 when the synchronous transmission FIFO is empty

· asynchronous TPDOs are entered in
		the standard transmission FIFO
that is also used for
		=> the heartbeat message
		=> guarding requests
		=> NMT commands
		=> emergency messages
		=> SDO commands

an overrun of the FIFO must be avoided
		=> the CM CANopen checks
		 => if a message can be entered in this FIFO
			=> if not:
			 => the message will be entered
				 when there is space in the FIFO

hint:
· a new cycle of the processing of the process image output
	is not started
until all asynchronous TPDOs
	have been processed
 	entered in the FIFO (if the TPDO is to be sent)

· therefore:
	the processing of the process image is described only for the
	asynchronous TPDOs

Processing of asynchronous TPDOs:

· the CM CANopen checks each asynchronous TPDO if it must be transmitted

· processing of an asynchronous TPDO:
check if the TPDO must be transmitted:
· no:
	continue with the next asynchronous TPDO
· yes:
 	check if it can be entered in the transmit FIFO
· yes:
	continue with the next asynchronous TPDO
· no:
	retry

· a new cycle of the processing of the process image output
	is not started
until all asynchronous TPDOs
	have been processed

[bookmark: _Toc32411280]SDO commands
[bookmark: _Toc32411281]General hints

[bookmark: _Toc32411282]Download of the Process Image Output

Hint:
· SetProcessDataOut FC must be called at least once per OB1 cycle

· the download of the process image output must be requested by the application

Description of REQ InOut parameter of SetProcessDataOut FC:
· REQ InOut parameter
· controls the execution of a download of the process image output
· at the same time:
	it informs the application whether SetProcessDataOut FC is 	available for a new download

· REQ InOut parameter = FALSE
· do not run the download of the process image output
· SetProcessDataOut FC returns immediately
· hint:
· an already started but not finished download will not continue:
	its processing is suspended but not finished

· REQ InOut parameter = TRUE
· run the download of the process image output
· hint:
· SetProcessDataOut FC
	automatically clears the flag at REQ InOut parameter when the download has been finished
· hint:
· therefore, the flag that controls the REQ InOut parameter must not be reset by the application if true

Demo:
· "Ctrl_CM_CANopen".SetPIOut.fReq
	controls the REQ InOut parameter of SetProcessDataOut FC

[bookmark: _Toc32411283]Use of SDOs

SDO commands should not be used as substitutes for PDOs
· you can always read or write only one object with an SDO command
· only 1 SDO command can be executed to a device at a time
· PDOs can transfer several objects
· a device can communicate with several PDOs for both directions at a time

SDO commands should be used for data that cannot be mapped in PDOs.

Tip: CM CANopen Configuration Studio
· objects that need to be configured only after power on / reset can be configured in the CM CANopen Configuration Studio

· this configuration will be part of the generated configuration for the slave device
· the CM CANopen then also configures the slave with these values after power off / on or reset of the slave

· click on the slave in the tab "Project Explorer"
click on the tab "Device Parameters Node-ID ..."
	at the bottom of the tab "PDO Parameters Node-ID ..."
select the object: index and sub-index
	grey objects are read only
enter the value in the corresponding Value field

[bookmark: _Toc465941639]

[bookmark: _Toc32411284]Processing of an SDO command

The execution of an SDO command needs time
· especially if another device than the CM CANopen is accessed
· especially if a high amount of data is transferred
· due to the use of Siemens SFBs WRREC and RDREC

A started command must be processed until it has signaled finished
otherwise
the related state machines and the data will be corrupted:
· the CM module may run into a fatal error situation
=> only power off / on will resolve it
· the PLC may detect a serious error
=> only power off / on will resolve it

Note: output BUSY of ReadSDO [FB104] / WriteSDO [FB105]
· a requested SDO command has been processed / is finished when output BUSY has switched to FALSE

Note: input SLOT of ReadSDO [FB104] / WriteSDO [FB105]
· SLOT must not be confused with a slot of TIA Portal
· the CM CANopen uses SDO channels internally
· SLOT defines the SDO channel to be used for the requested SDO command

[bookmark: _Toc465941640][bookmark: _Toc32411285]Data format

The data are transferred
· SDO read:
	according the received byte order from the accessed device
· SDO write:
	according the byte order in the data area that is written to the CM
 	CANopen

The data format of the transferred SDO data between the CM CANopen and the PLC is little endian (CANopen format)
· the least significant byte (LSB)
	is transferred first
	is located at low address
· the most significant byte (MSB)
 	is transferred last
	is located at high address

Hint: the data format of the PLC is big endian
· the least significant byte (LSB)
	is located at high address
· the most significant byte (MSB)
 	is located at low address

Data usually has to be swapped before downloading or after uploading:
· overview: standard data types

	Bit size
	data types
	Swap

	
	CANopen
	PLC
	

	8
	INTEGER8 UNSIGNED8
	SInt
USint, Byte
	no

	16
	INTEGER16 UNSIGNED16
	Int
UInt, Word
	yes

	32
	INTEGER32 UNSIGNED32
REAL32
	Dint
 UDInt, DWord
Real
	yes

· not standard data types:
· must be interpreted (read data) / entered (write data) individually

[bookmark: _Toc32411286]Example: data of Write SDO

Data is transferred to the CM module via a byte array:
· "Ctrl_CM_CANopen".WriteSDO.Data
· data type: “SDO_WriteData”
· “SDO_WriteData” is defined in
	PLC data types / CANopen

Order of transmission: 	
· 1st transmitted data byte
	“Ctrl_CM_CANopen“.WriteSDO.Data.SDO_WriteData[1]
…
nth transmitted data byte
 	“Ctrl_CM_CANopen“.WriteSDO.Data.SDO_WriteData[n]

Examples:
· 8 bit value:
=> value to be written: 16#12
=> “Ctrl_CM_CANopen“.WriteSDO.Data.SDO_WriteData[1] := 16#12;

· 16 bit value:
=> value to be written: 16#1234
=> “Ctrl_CM_CANopen“.WriteSDO.Data.SDO_WriteData[1] := 16#34; // LSB
 “Ctrl_CM_CANopen“.WriteSDO.Data.SDO_WriteData[2] := 16#12; // MSB

· 32 bit value:
=> value to be written: 16#12345678
=> “Ctrl_CM_CANopen“.WriteSDO.Data.SDO_WriteData[1] := 16#78; // LSB
 “Ctrl_CM_CANopen“.WriteSDO.Data.SDO_WriteData[2] := 16#56;
 “Ctrl_CM_CANopen“.WriteSDO.Data.SDO_WriteData[3] := 16#34;
 “Ctrl_CM_CANopen“.WriteSDO.Data.SDO_WriteData[4] := 16#12; // MSB

Hint: conversion of Real data
· direct conversion of a Real value does not work reliably

recommended conversion:
· convert the Real value to DWord
swap the DWord value
convert the DWord value to Real

[bookmark: _Toc32411287]Example: data of Read SDO

Read data is copied to a byte array
· “Ctrl_CM_CANopen“.ReadSDO.Data
· data type: “SDO_ReadData”
· “SDO_ReadData” is defined in
	PLC data types / CANopen

Order of reception: 	
· 1st transmitted / 1st received data byte
	“Ctrl_CM_CANopen“.ReadSDO.Data.SDO_ReadData[1]
…
nth transmitted / nth received data byte
 	“Ctrl_CM_CANopen“.ReadSDO.Data.SDO_ReadData[n]

Examples:
· 8 bit value:
=> “Ctrl_CM_CANopen“.ReadSDO.Data.SDO_ReadData[1] = 16#12
=> read value: 16#12

· 16 bit value:
 => “Ctrl_CM_CANopen“.ReadSDO.Data.SDO_ReadData [1] = 16#34; // LSB
 “Ctrl_CM_CANopen“.ReadSDO.Data.SDO_ReadData [2] = 16#12; // MSB
 => read value: 16#1234

· 32 bit value:
=> “Ctrl_CM_CANopen“.ReadSDO.Data.SDO_ReadData [1] := 16#78; // LSB
 “Ctrl_CM_CANopen“.ReadSDO.Data.SDO_ReadData [2] := 16#56;
 “Ctrl_CM_CANopen“.ReadSDO.Data.SDO_ReadData [3] := 16#34;
 “Ctrl_CM_CANopen“.ReadSDO.Data.SDO_ReadData [4] := 16#12; // MSB
	=> read value: 16#12345678

Hint: conversion of Real data
· direct conversion of a Real value does not work reliably

recommended conversion:
· convert the Real value to DWord
swap the DWord value
convert the DWord value to Real

[bookmark: _Toc465941641][bookmark: _Toc32411288]Parallel processed SDO commands

Maximum number of parallel processed SDO commands:
· maximum 4 SDO commands (independent of read or write) can be processed at the same time

· this limitation is set by the S7 1200
 	although the CM module supports up to 8 SDO channels

· but each SDO channel can be used (SLOT 0 - 7)

Restrictions for parallel processed SDO commands:
parallel processed SDO commands
· must use different instance FBs
=> otherwise the processing will be corrupted:
· the CM module may run into a fatal error situation
=> only power off / on will resolve it
· the PLC will detect a serious error
=> only power off / on will resolve it

· parallel processed SDO commands that communicate with the same CM CANopen
· must access different CANopen devices
· their CANopen node id must be different
· must use different SDO channels
· must not share the same data area
to avoid that a running SDO command is aborted / corrupted
[bookmark: _Toc465941642]

[bookmark: _Toc32411289]Application note: “CANopen Manager” mode

SDO command that accesses a slave device
	should not be performed
before
	the slave has been successfully booted / configured
because:
· the configuration of the slave is only consistent when it has been booted successfully
· consequences if the slave has not been booted successfully:
· SDO read command:
	read data may be erroneous
		because its value depends of a configuration that is 		only provided by a successfully booted slave
· SDO write command:
	its data will be most probably overwritten or reset to default 		by the later processed boot slave process

"Get Node & Network Status" or the diagnostic objects 5002h (Configured slaves bit list) and 5004h (Operational slaves bit list) of the CM CANopen provide the status information - booted (configured) / operational - of the slaves.

Note:
· only a successfully booted slave can be set to operational.

[bookmark: _Toc32411290]Application note: “CANopen slave” mode

[bookmark: _Toc32411291]Accessed CANopen device: CM CANopen

SDO read command:
· there are not any restrictions
· the object dictionary of the CM CANopen can be read

SDO write command:
· It must be differentiated between
	CANopen network with a CANopen master
	CANopen network without a CANopen master

SDO write command: CANopen network with a CANopen master
· the configuration of the CM CANopen
 	shall not be changed by the PLC
to avoid inconsistencies of the over -	 all configuration of the CANopen network

· the PLC can request the CANopen NMT state changes
	reset node / communication
 	set preoperational / stopped
of the CM CANopen
allowed action:
	index: 	1F82h
 	subindex: 	CANopen node-id of the CM CANopen
 	value: 	 4 set stopped
			 6 reset node
			 7 reset communication
			127 set preoperational

SDO write command: CANopen network without a CANopen master
· the object dictionary of the CM CANopen can be configured by the PLC 	the customer is responsible
		for a consistent configuration of the CANopen network

· the PLC can request the CANopen NMT state changes
	reset node / communication
 	set preoperational / stopped
of the CM CANopen

allowed action:
	index: 	1F82h
 	subindex: 	CANopen node-id of the CM CANopen
 	value: 	 4 set stopped
			 6 reset node
			 7 reset communication
			127 set preoperational

· the PLC can request the CANopen NMT state change
	to operational
of the CM CANopen

condition:
	 the CM CANopen is configured as a self-starting device:
		=> 1F80h, subindex 0 = 16#00000008

allowed action:
	index: 	1F82h
	subindex: 	CANopen node-id of the CM CANopen
	value: 	5 set operational

· the PLC can request the CANopen NMT state change
	to operational
of the CANopen network

condition:
	 CM CANopen shall execute the NMT service
 		start remote node with node-ID set to 0
		=> 1F80h, subindex 0 = 16#00000002

allowed action:
	index: 	1F82h
	subindex: 	80h
	value: 	5 set operational

[bookmark: _Toc32411292]Accessed CANopen device: another device than the CM CANopen

CANopen network with a CANopen master:
· the object dictionary of other devices shall not be accessed
· SDO commands may only by executed by the CANopen
master

CANopen network without a CANopen master:
· the object dictionary of other devices can be accessed by SDO read and SDO write commands
the customer is responsible
· that it will not cause SDO conflicts
· for a consistent configuration of the CANopen network

[bookmark: _Toc32411293]SDO demo

The SDO demo is an example
· to communicate with one CM CANopen
· for the processing of an SDO read command
· for the processing of an SDO write command

The demo uses a symmetric structure for SDO read and SDO write.

There is one main function each
· SDO read main function:
· the demo offers 2 alternatives for this routine:
· one implemented as a function
	Api_SDOReadMain
· the other implemented as a function block
	Api_SDORead_FB
· both provide the same functionality

· SDO write main function:
· the demo offers 2 alternatives for this routine:
· one implemented as a function
	Api_SDOWriteMain
· the other implemented as a function block
	Api_SDOWrite_FB
· both provide the same functionality

which is responsible for the execution of an SDO command.

Hint: parallel processed SDO commands
· each main function
· can process just one command at the same time

· parallel processed SDO read commands
· use several instances of
	Api_SDORead_FB FB
instead of
	Api_SDOReadMain FC

· parallel processed SDO write commands
· use several instances of
	Api_SDOWrite_FB FB
instead of
	Api_SDOWriteMain FC
Description of the main function (FC respectively FB):

· the main function calls a callback function in idle state

· this callback function
	that must be coded by the customer
informs the main function
· whether and which command shall be executed
	
· about the parameters of the requested command
· which CM CANopen shall be accessed
· which SDO channel shall be used
· which CANopen node id shall be accessed
· which object (index, subindex) shall be accessed
· SDO write:
	how many data shall be transmitted
	provides the data

· SDO read main calls
 		Api_CheckRequestSDORead FC
SDO write main calls
 		Api_CheckRequestSDOWrite FC

· then the main function executes the requested command

· when the command has been processed:	

· the main function calls another callback function
· this callback function
	that must be coded by the customer
informs the application about
 	the parameters
	the result
	the data (SDO read)
of the processed command

· SDO read main calls
 		Api_ProcessSDOReadResponse FC
SDO write main calls
 		Api_ProcessSDOWriteResponse FC

· then it returns to idle state

[bookmark: _Toc32411294]SDO Read demo

[bookmark: _Toc32411295]Overview: SDO read demo

Program group "SDO Read":
· provides all functions and function blocks
 	to process an SDO read command

The processing of an SDO read command is handled by:

· the data type: “SDO_ReadData”

· definition of “SDO_ReadData”:
 	Array[1.."cSDORead_MaxDataSize"] of Byte

	see: 	PLC data types / CANopen
		PLC tags / Show all tags / User constants

· it is mandatory for SDO read commands

	see ReadSDO FB, Api_ProcessSDOReadResponse FC

· the user constant: "cSDORead_MaxDataSize"

· it defines
· the byte size of the structure “SDO_ReadData”
· the maximum number of data bytes that can be read
· see input MAX_SIZE of ReadSDO FB
· see 	Api_SDOReadMain FC
	Api_SDORead_FB FB

· the structure "Ctrl_CM_CANopen".ReadSDO

· it provides all parameters / variables / the data area and the state machine to run one SDO read command
· this structure is exclusively used by Api_SDOReadMain FC
· it is not used by Api_SDORead_FB FB

· Api_SDOReadMain FC / Api_SDORead_FB FB
· main function for one SDO read command

· it asks the application in its idle state
	whether and which command shall be executed
by calling
	Api_CheckRequestSDORead FC

· it processes the requested SDO read command

· it informs the application
 about the result of the processed SDO read command
 by calling the application function:
	 	Api_ProcessSDOReadResponse FC

· Api_CheckRequestSDORead FC

· the application is asked whether and which SDO read command shall be executed

· Api_ProcessSDOReadResponse FC

· it informs the application about
	the parameters
	the result
	the read data
of a processed SDO read command	

[bookmark: _Toc32411296]Adaption of the demo

[bookmark: _Toc32411297]Api_SDOReadMain FC / Api_SDORead_FB FB

FC_SDOReadMain respectively FB_SDOReadMain:
· main function for an SDO read command
· each can process just one command at the same time

· each (FC and FB) provides the same functionality
· neither FC nor FB must be adapted by the customer

· advantage of Api_SDORead_FB FB
· the implementation of parallel processing of SDO read commands is much easier with the FB
· advantage of Api_SDOReadMain FC
· its implementation is more transparent and rather illustrates the method

Adaption: parallel processing of SDO read commands
· do not use Api_SDOReadMain FC
· use instances of SDOReadMain_FB

[bookmark: _Toc32411298]the user constant "cSDORead_MaxDataSize"

The user constant "cSDORead_MaxDataSize"
· defines the byte size of the structure “SDO_ReadData”
· defines the maximum number of data bytes
	that can be read by one SDO read command
· value range:
· 1 <= "cSDORead_MaxDataSize" < 216 = 65536
· default value of the demo: 245
· it can be changed by the customer:
· "cSDORead_MaxDataSize"
	>= maximum data byte size of an object
 	 	that is read by the application

[bookmark: _Toc32411299]Api_CheckRequestSDORead FC

Api_CheckRequestSDORead FC
· informs the calling function
	whether and which SDO read command shall be executed

see below: output parameters

· allows the management of all SDO commands by the application in conjunction with the functions:
	Api_ProcessSDOReadResponse FC
	Api_CheckRequestSDOWrite FC
	Api_ProcessSDOWriteResponse FC

· is application specific
	and must be coded by the customer
		search for // todo by the customer

please read the comments of Api_CheckRequestSDORead FC:
· they explain
· what needs to be respected
· restrictions
	line 72 – 83
	line 85 – 100
· status of the accessed device
	line 104 – 121
· how to implement it
· general
	line 139 – 181
	line 185 – 216
· example
	line 228 – 255

Restrictions for parallel processed SDO commands:
parallel processed SDO commands
· must use different instance FBs

· parallel processed SDO commands on one CM CANopen device
· must access different CANopen devices
· must use different SDO channels
· must not share the same data area

Output Parameters:

	Name
	Data type
	Description

	fRequest
	Bool
	TRUE: start and run the parameterized
 	 SDO read command
FALSE: do not start / run a new SDO read 	 	 command

	HW_ID
	HW_IO
	hardware identifier
	of the accessed CM CANopen module

	bSDOChannel
	Byte
	SDO channel of the CM CANopen
 	that shall be used
 		for the requested command

	iCANopenNodeId
	Int
	CANopen node id of the device
	that shall be accessed

	wIndex
	Word
	index of the object that shall be read

	bSubindex
	Byte
	subindex of the object that shall be read

Hint:
· the output parameters
	HW_ID
	bSDOChannel,
	iCANopenNodeId
	wIndex
	bSubindex
are only relevant if an SDO read command shall be processed
	fRequest = TRUE
otherwise they will be ignored
	

[bookmark: _Toc32411300]Api_ProcessSDOReadResponse FC

Api_ProcessSDOReadResponse FC
· informs the application about
	the parameters
	the result
	the read data
of a processed SDO read command

	see below: input parameters

· it allows the management of all SDO commands by the application in conjunction with the functions:
	Api_CheckRequestSDORead FC
	Api_CheckRequestSDOWrite FC
	Api_ProcessSDOWriteResponse FC

· is application specific
	and must be coded by the customer
		search for // todo by the customer

please read the comments of Api_ProcessSDOReadResponse FC:
· they explain
· what needs to be done for the general SDO management
	line 90 – 97
· how to implement it
· failure
	line 105 – 114	
· success
	interpretation of the data
		line 122 – 129
	data format / order of the data bytes
		line 131 - 232

Read data:
· number of read data bytes input uiDataByteSize
· data format:
· CANopen format little endian
	least significant byte is received first LSB
	most significant byte is received last MSB
· order of reception:
· 1st received data byte 1st transmitted by the device LSB
	#Data.SDO_ReadData[1]
…
nth received data byte nth transmitted
 	#Data.SDO_ReadData[n]
…
last received data byte last transmitted MSB
 	#Data.SDO_ReadData[#uiDataByteSize]

· see also:
· Api_ProcessSDOReadResponse FC:
	line 122 – 129, 131 – 232

Input Parameters:

	Name
	Data type
	Description

	HW_ID
	HW_IO
	hardware identifier
	of the accessed CM CANopen module

	bSDOChannel
	Byte
	used SDO channel
	of the CM CANopen

	iCANopenNodeId
	Int
	CANopen node id
	of the accessed device

	wIndex
	Word
	index of the read object

	bSubindex
	Byte
	subindex of the read object

	uiResult
	UInt
	result
	of the processed SDO read
	command
= output RET of ReadSDO FB

	uiDataByteSize
	UInt
	number of read data bytes

	Data
	"SDO_ReadData"
	data field

Hint:
· the input parameters
	#uiDataByteSize and #Data
are only valid
if the SDO read command has been processed successfully
	#uiResult = 0

[bookmark: _Toc32411301]Structure: "Ctrl_CM_CANopen".ReadSDO

This structure holds all information to run one SDO read command:
· this structure is exclusively used by Api_SDOReadMain FC

Description of the structure ReadSDO:

	Name
	Data type
	Description

	fIdle
	Bool
	state machine of Api_SDOReadMain 	TRUE => idle / not busy

	fReq
	Bool
	flag controls
	REQ input of ReadSDO FB

	HW_ID
	HW_IO
	hardware identifier of the accessed CM CANopen in TIA Portal

	bSDOChannel
	Byte
	selected SDO channel

	iCANopenNodeId
	Int
	CANopen node id of the accessed device

	wIndex
	Word
	index of the accessed object in the object dictionary

	bSubindex
	Byte
	subindex of the accessed object in the object dictionary

	diMaxSize
	Dint
	upper limit of data bytes that can be read and saved

	fBusy
	Bool
	status of an SDO read command:
	output BUSY of ReadSDO FB

	uiRet
	UInt
	result of a processed SDO read command:
	output RET of ReadSDO FB

	uiDataByteSize
	UInt
	number of uploaded data bytes
	output SIZE of ReadSDO FB

	Data
	"SDO_ReadData"
	data area where the read data are saved

[bookmark: _Toc32411302]SDO Write demo

[bookmark: _Toc32411303]Overview: SDO write demo

Program group "SDO Write":
· provides all functions and function blocks
 	to process an SDO write command

The processing of an SDO write command is handled by:

· the data type “SDO_WriteData”
· definition of “SDO_WriteData”:
 	Array[1.." cSDOWrite_MaxDataSize"] of Byte

	see: 	PLC data types / CANopen
		PLC tags / Show all tags / User constants

· it is mandatory for SDO write commands

	see SDOWrite FB, Api_CheckRequestSDOWrite FC

· the user constant "cSDOWrite_MaxDataSize"

· it defines
· the byte size of the structure “SDO_WriteData”
· the maximum number of data bytes
	that can be written by one SDO write command

· the structure "Ctrl_CM_CANopen".WriteSDO

· it provides all parameters / variables / the data area and the state machine to run one SDO write command
· this structure is exlusively used by Api_SDOWriteMain FC

· Api_SDOWriteMain FC / Api_SDOWrite_FB FB
· main function for one SDO write command

· it asks the application in its idle state
	whether and which command shall be executed
by calling
 Api_CheckRequestSDOWrite FC

· it processes the requested SDO write command

· it informs the application
 about the result of the processed SDO read command
 by calling the application function:
	 	Api_ProcessSDOWriteResponse FC

· Api_CheckRequestSDOWrite FC

· the application is asked whether and which SDO write command shall be executed

· Api_ProcessSDOWriteResponse FC

· it informs the application about
	the parameters
	the result
of a processed SDO write command	

[bookmark: _Toc32411304]Adaption of the demo

[bookmark: _Toc32411305]Api_SDOWriteMain FC / Api_SDOWrite_FB FB

Api_SDOWriteMain respectively Api_SDOWrite_FB:
· main function for an SDO write command
· each can process just one command at the same time

· each (FC and FB) provides the same functionality
· neither FC nor FB must be adapted by the customer

· advantage of Api_SDOWrite_FB FB
· the implementation of parallel processing of SDO read commands is much easier with the FB
· advantage of Api_SDOWriteMain FC
· its implementation is more transparent and rather illustrates the method

Adaption: parallel processing of SDO read commands
· do not use Api_SDOWriteMain FC
· use instances of Api_SDOWrite_FB

[bookmark: _Toc32411306]the user constant "cSDOWrite_MaxDataSize"

The user constant "cSDOWrite_MaxDataSize"
· defines the byte size of the structure “SDO_WriteData”
· defines the maximum number of data bytes
	that can be written by one SDO write command
· value range:
· 1 <= "cSDOWrite_MaxDataSize" < 216 = 65536
· default value of the demo: 245
· it can be changed by the customer:
· "cSDOWrite_MaxDataSize"
	>= maximum data byte size of an object
 	 	that is written by the application

[bookmark: _Toc32411307]Api_CheckRequestSDOWrite FC

Api_CheckRequestSDOWrite FC
· informs the calling function
	whether and which SDO write command shall be executed

see below: output parameters

· allows the management of all SDO commands by the application in conjunction with the functions
	Api_ProcessSDOWriteResponse FC
	Api_CheckRequestSDORead FC
	Api_ProcessSDOReadResponse FC

· is application specific
	and must be coded by the customer
		search for // todo by the customer

please read the comments of Api_CheckRequestSDOWrite FC:
· they explain
· what needs to be respected
· restrictions
	line 76 – 85
	line 88 – 103
· status of the accessed device
	line 107 – 129
· how to implement it
· general
	line 147 – 201
	line 205 – 242
· data:
data format:
	line 248 – 256
data types:
	line 259 – 284
order of the data bytes:
	line 287 – 296
	line 299 – 332
· example implementation
	line 345 – 388

Restrictions for parallel processed SDO commands:
parallel processed SDO commands
· must use different instance FBs

· parallel processed SDO commands on one CM CANopen device
· must access different CANopen devices
· must use different SDO channels
· must not share the same data area

Written data:
· number of data bytes to be written output uiDataByteSize
· data format:
· CANopen format little endian
	least significant byte is transmitted first LSB
	most significant byte is transmitted last MSB
· order of transmission:
· 1st transmitted data byte 1st received LSB
	#Data.SDO_WriteData[1]
…
nth transmitted data byte nth received
 	#Data.SDO_WriteData[n]
…
last transmitted data byte last received MSB
 	#Data.SDO_WriteData[#uiDataByteSize]

· see also:
· Api_CheckRequestSDOWrite FC:
	line 246 – 332

Output Parameters:

	Name
	Data type
	Description

	fRequest
	Bool
	TRUE: start and run the
 	 parameterized SDO write
 	 command
FALSE: do not start / run a new
	 SDO write command

	HW_ID
	HW_IO
	hardware identifier
	of the accessed CM CANopen
 	module

	bSDOChannel
	Byte
	SDO channel of the CM CANopen
 	that shall be used
 	 for the requested command

	iCANopenNodeId
	Int
	CANopen node id of the device
	that shall be accessed

	wIndex
	Word
	index of the object
	that shall be written

	bSubindex
	Byte
	subindex of the object
	that shall be written

	uiDataByteSize
	UInt
	number of data bytes to be written

	Data
	"SDO_WriteData"
	data field

Hint:
· the output parameters
	HW_ID
	bSDOChannel,
	iCANopenNodeId
	wIndex
	bSubindex
	uiDataByteSize
	Data
are only relevant if an SDO write command shall be processed
	fRequest = TRUE
otherwise they will be ignored

	
[bookmark: _Toc32411308]Api_ProcessSDOWriteResponse FC

Api_ProcessSDOWriteResponse FC
· informs the application about
	the parameters
	the result
of a processed SDO write command

see below: input parameters

· it allows the management of all SDO commands by the application in conjunction with the functions:	
	Api_CheckRequestSDOWrite FC
	Api_CheckRequestSDORead FC
	Api_ProcessSDOReadResponse FC
	

· is application specific
	and must be coded by the customer
		search for // todo by the customer

please read the comments of Api_ProcessSDOWriteResponse FC:
· they explain
· what needs to be done for the general SDO management
	line 69 – 76
· how to implement it
· failure
	line 84 – 93	
· success
	line 98

[bookmark: _Toc32411309]Structure: "Ctrl_CM_CANopen".WriteSDO

This structure holds all information to run one SDO write command:
· this structure is exclusively used by Api_SDOWriteMain FC

Description of the structure WriteSDO:

	Name
	Data type
	Description

	fIdle
	Bool
	state machine of FC_SDOWriteMain
 TRUE => idle / not busy

	fReq
	Bool
	flag controls
 REQ input of WriteSDO FB

	HW_ID
	HW_IO
	hardware identifier of the accessed CM module in TIA Portal

	bSDOChannel
	Byte
	selected SDO channel

	iCANopenNodeId
	Int
	CANopen node id of the accessed device

	wIndex
	Word
	index of the accessed object in the object dictionary

	bSubindex
	Byte
	subindex of the accessed object in the object dictionary

	uiDataByteSize
	UInt
	number of data bytes to be written

	fBusy
	Bool
	status of an SDO write command:
 output BUSY of WriteSDO FB

	uiRet
	UInt
	result of a processed SDO write command:
 output RET of WriteSDO FB

	Data
	"SDO_WriteData"
	data area where to get the data to be written

[bookmark: _Toc32411310]Get Node & Network Status

[bookmark: _Toc32411311]Discussion of the diagnostic information

The discussion of the diagnostic information
· provides more details than the user manual
· lists the events that cause a specific diagnostic event
· lists diagnostic objects of the CM module that provide more / additional information

[bookmark: _Toc32411312]General hints

“General hints” clarifies some terms that are used to discuss the diagnostic information.

Notation: slave device / unexpected device
· slave device or slave:
· device has been entered as a CANopen slave in the Project Explorer of the CM CANopen Configuration Studio
· Bit 0 of its NMT Slave configuration is set

 	note:
· each slave device is marked in the diagnostic object 5001h

· unexpected device:
· device has not been entered as a CANopen slave in the Project Explorer of the CM CANopen Configuration Studio
· Bit 0 of its NMT Slave configuration is not set

 	note:
· unexpected devices are not marked in the diagnostic object 5001h
· a present unexpected device is marked in the diagnostic object 5003h

Note: Boot slave process
· the boot slave process is used by a CANopen Manager
1. to check if a device is present (slave device and unexpected device)
2. to check the identity of the slave device
	see below: Note: identity error
3. to restore the default configuration
condition:
· Bit 7of its NMT Slave configuration must be set
· the value of its Restore Configuration must not be 0
4. to configure the slave with its generated configuration provided by the object
 	1F22h, subindex CANopen node id of the booted slave
	see chapter 7.2.2 of the user manual
	see below: Note: configuration of the slave has failed
5. to start the error control service for the slave
6. to update the CANopen NMT state of the slave

hint:
the slave is set to operational if all subsequent conditions are true
· the CM module is allowed to start the slaves:
	Bit 3 of the NMT Startup must not be set
· the CM module is operational or Bit 1 of the NMT Startup is not set

· CANopen network initialization:
the CM module processes at least one boot slave process for each CANopen node id

· Repetition of a failed boot slave process:
· slave device:
failed boot slave process is only repeated if Bit 2 of its NMT Slave configuration is set
otherwise it must be requested by the PLC:
	see 1F25h, subindex CANopen node id of the booted slave
	see chapter 7.2.2 of the user manual
· unexpected device:
the boot slave process of an unexpected device is repeated until the unexpected device has been removed from the CANopen network or when it has been configured as a slave

Note: identity error
· The CM module only checks the identity objects of a slave that has been selected for the slave in the CM CANopen Configuration Studio.

	see CM CANopen Configuration Studio:
 		Network Management Configuration
 Slave Assignment
 	 Device Type, Vendor-ID, Product Code, Revision
 		 Number, Serial Number of the slave

· An identity object is checked if it has been selected and its value is not equal to 0 (don`t care).
· Device Type, Vendor-ID, Product Code and Serial Number:
	must match exactly
· Revision Number:
· major Revision Number (bits 16 - 31) must match exactly
· read minor revision number (bits 0 - 15) must be greater than or equal to the expected on
· index 500Ah: identity error bit list
	lists the slaves that identity do not match

Note: configuration of the slave has failed
· CM CANopen Configuration Studio generates an individual configuration for each slave device that has been entered in the “Project Explorer”
· The generated configuration only contains the configuration that differs from the default configuration of the EDS
· The generated configuration of a slave is stored in
	1F22h, subindex CANopen node id of the slave
on the CM module
· Each slave device is configured with its configuration by its boot slave process:
	see above: Note: Boot slave process
· the configuration of a slave will fail
· if the configuration
· contains an object that is not supported by the slave
· contains an object that is read only
· contains a value that is out of range
· maps on object that is not mappable
· contains an object that data type does not match the data type of the real device

	these errors are caused by an EDS file that does not describe the
 	real device correctly and completely

	action:
· ask the manufacturer for the correct EDS

· if the slave has not been implemented according the CANopen
specification

action:
· ask the manufacturer for a FW update

· realistic solution:
· manufacturer does not provide a revised EDS / FW update
· the EDS has to be revised by the customer:
	analyse the CAN bus traffic and adjust the EDS step by step

Note: slave is configured by its specific configuration tool
· EDS:
· EDS file must be adjusted so it describes its individual configuration as the default configuration

· Bit 7 of its NMT Slave configuration
· must not be set
· set bit requires the restoring of the default configuration which will delete the individual configuration

Note: error control event
Error control event covers
· failure of the boot slave process of a slave
possible reasons:
· slave is missing
· identity error of a slave
· the configuration of the slave has failed
· erroneous behavior of the slave
· heartbeat timeout
slave has not transmitted its heartbeat within the configured heartbeat consumer time

condition:
	slave must be entered in the consumer heartbeat list and the 	configured consumer heartbeat time is not 0

	see CM CANopen Configuration Studio:
 		Error Control Configuration
 	 Consumer Time list of the CM module

· lifetime timeout
slave is guarded and has not responded within its lifetime

condition:
	slave must be guarded by the CM module
 	Guard Time · Retry Factor > 0

	see CM CANopen Configuration Studio:
 		Error Control Configuration
 Node Guarding
 	 Guard Time and Retry Factor of the slave

· heartbeat / guarding response reports another CANopen NMT state than the expected one
e.g.:
	CM module expects operational
 	but the slave reports pre-operational

· unexpected bootup message of a slave

· a device is present that has not been configured as slave

Note: CANopen slave mode
· the diagnostic objects 5003h - 5006h are also updated by the CM module running in CANopen slave mode
· condition:
	only devices that has been entered in the consumer heartbeat list
 	of the CM module with a consumer heartbeat time > 0 are
 	displayed in these lists
· additional condition: 5003h
	the monitoring of the heartbeat of another device is started with
 	the first reception of its heartbeat message
· the objects 5004h - 5006h display the CANopen NMT status (operational, pre-operational, stop) reported by the received heartbeat messages

[bookmark: _Toc32411313]Get Node & Network Status: Message error

Message error must be checked first.
If message error reports an error (message error <> 0)
· analysis of the message error and reaction must be coded by the customer
· all subsequent diagnostic data are irrelevant / invalid
· see chapter 8.1.4 of the manual
	Contents of parameter RECORD: Offset: 0

[bookmark: _Toc32411314]Get Node & Network Status: CANopen Module mode

If the reported operating mode is not the expected one:
· select the correct operating mode in the hardware configuration of the CM module
· download the new hardware configuration to the PLC
· power off / on the PLC
· see chapter 8.1.4 of the manual
	Contents of parameter RECORD: Offset: 3

[bookmark: _Toc32411315]Get Node & Network Status: Error flags (module)

This chapter discusses the single error events
· see chapter 8.1.4 of the manual
		Contents of parameter RECORD: Offset: 1

Bus off (bit 0):
· possible reasons:
· short cut of the CAN cable
· wrong mounting of the CAN connection
· the CAN network is not terminated correctly
· the CAN network must have a line topology
· the cable length is too long for the selected CAN baudrate
· the CAN baudrate selected in the module parameters of the CM
module is wrong
· a CANopen device is running with a wrong CAN baudrate
· noise

· note:	
	the CM module automatically retries to recover form bus off

· action:
 	check the above possible errors

· hint: noise
· use a standard CAN cable:
	shielded twisted pair
· shield has to be grounded at one side

Configuration download error (bit 1):
· the download of the CANopen configuration to the CM module has failed:
the configuration of the CM module is invalid
· action:
 		download the CANopen configuration to the CM

Parameterization error (bit 2):
· the actual CANopen network does not match the configured / expected CANopen network:
possible reasons:
· boot slave process of a slave has failed:
possible reasons:
- slave is missing
- identity error of a slave
- download of the configuration to a slave has failed
· error control event of a slave
· an unexpected device is present
· action:
· analyse the status of each CANopen node id: 1 – 127

status of a CANopen device with CANopen node id i:
 	Offset (4 + CANopen node id i)

see chapter 8.1.4 of the manual
		Contents of parameter RECORD

note:
	the status of the CM module is also displayed

NVS error (bit 3):
· the saved CANopen configuration is corrupted:
· the CM module does not communicate with the CANopen network
RUN - CANopen LED: off
ERR - CANopen LED: blinking with 1Hz

· action:
· power off / on the PLC
· fatal error log can be read by SDO: index 5500h, subindex 1
· inform HMS and provide the read fatal error log

[bookmark: _Toc32411316]Get Node & Network Status: Error flags (network)

This chapter discusses the single error events
· see chapter 8.1.4 of the manual
		Contents of parameter RECORD: Offset: 2

Network not ready (bit 0):
· possible reasons: CANopen Manager mode
· CM module is not operational
- network scan and initialization has not been finished yet
	see also 5000h, subindex 2
- the CM module is disconnected from the CAN bus
	see object 5000h, subindex 1: bit 13
· no slave is operational
- network scan and initialization has not been finished yet
	see also 5000h, subindex 2
- slave(s) is (are) missing
- no slave has been booted successfully
· the CANopen state of the CM module has been changed by
command
· PLC is stopped
	
	 action:
· check “Offset” 4 "CANopen Node status"
		 CANopen NMT status of the CM module
· check bit 1: node error control event of Error flags (network)
· analyse the status of each CANopen node id: 1 - 127
	“Offset” 5 status of node id 1
	…
	“Offset” 131 status of node id 127

· additional diagnostic information is provided by the objects
	5xxxh
see also chapter 7.3 Manufacturer Specific Objects

· possible reasons: CANopen slave mode
· CM module is not operational
- the CANopen master has not set the CM module to operational
 or has requested a not operational state
- reaction to an error event:
 the reaction depends of the configuration of the error behavior
 object: index 1029h:
 	see chapter 7.2 of the user manual

· action: 	
· check “Offset” 4 "CANopen Node status"
		 CANopen NMT status of the CM module
· additional diagnostic information is provided by the objects
- 5000h: subindex 1 / 2
- 50003h
- 50004h - 5006h
 note:
 		only devices that has been entered in the consumer
 		heartbeat list of the CM module with a consumer
		heartbeat time > 0 are displayed in these lists

 see chapter 7.3 of the user manual

Node error control event (bit 1):
· possible reasons: CANopen Manager mode
· error control event of a slave device
· CM module is disconnected from the CANopen network
	see object 5000h, subindex 1: bit 13

action:	
· analyse the status of each CANopen node id: 1 - 127
	“Offset” 5 status of node id 1
	…
	“Offset” 131 status of node id 127

note:
	the status of the CM module is also displayed

additional diagnostic information is provided by the objects
	5xxxh
see also chapter 7.3 Manufacturer Specific Objects

· possible reasons: CANopen slave mode
· timeout of the reception of the heartbeat of another CANopen device that is to be monitored:
	see index 1016h described in chapter 7.2 of the user 		manual
· CM module is disconnected from the CANopen network
	see object 5000h, subindex 1: bit 13

 	action:
· additional diagnostic information is provided by the objects
· object 5003h
· object 5000h, subindex 1: bit 13

Guarding error (bit 2):
This bit is only relevant for the CANopen slave mode.
It reports a timeout of the guarding by the CANopen master
· condition:
· the master had started to guard the CM module
· lifetime > 0
lifetime = life time factor (index 100Dh) · guard time (index 100Ch)
· guarding request of the CANopen master has not been received within the configured lifetime

[bookmark: _Toc32411317]Get Node & Network Status: CANopen Node Status

CANopen Node Status informs about the current CANopen NMT status of the CM module
· see chapter 8.1.4 of the manual
		Contents of parameter RECORD: Offset: 4

Node NMT status:
· NMT State Operational
	the CM module is operational and can exchange process image
 	data with PDOs
· NMT State Unknown
	CM module has not finished its CANopen initialization after power
 	on
· Reset Node / Reset Communication
	the CM module is processing a reset command that has been
 	requested by
		the PLC (CANopen manager / slave mode)
 		or by the CANopen master (CANopen slave mode)
· NMT Pre-operational
possible reasons:
· CANopen Manager mode:
· the CANopen network initialization process is running
· the CM module is disconnected and the CANopen network initialization process has not been finished

note:
		running CANopen network initialization process is
 		suspended if the CM CANopen cannot communicate
 		with the CANopen network
· the CM module has been set to pre-operational by the PLC
· CANopen slave mode:
· the CANopen master
	has not set the CM module to operational yet
	has set the CM module to preoperational
· the CM module has entered this state due to an error
	see index 1029h
 described in chapter 7.2 of the user manual

· NMT State Stopped
possible reasons:
· CANopen Manager mode:
· the CM module has been set to stopped by the PLC
· CANopen slave mode:
· the CANopen master has set the CM module to stopped
· the CM module has entered this state due to an error
	see index 1029h
 described in chapter 7.2 of the user manual

additional diagnostic information is provided by
· see Error flags (network)
· object 5000h, subindex 1 - 4

[bookmark: _Toc32411318]Get Node & Network Status: Network status

Network status provides individual diagnostic and CANopen NMT status information for each CANopen node id: node id 1 - 127.

The CM module is also displayed.

Network status is only available in CANopen Manager mode.
· see chapter 8.1.4 of the manual
		Contents of parameter RECORD: Offset: 5
· “Offset” 5 status of node id 1
…
“Offset” 131 status of node id 127

Node State: bits 0 – 3
· NMT State Unknown
possible reasons
· the CANopen network initialization is running and the CM module has not tried to boot the slave yet
	see also object 5000h, subindex 2

· the slave device has been booted successfully but it is not controlled by the CM module:
neither by consuming its heartbeat nor by guarding
	see also object 5002h

· the slave device is present but its boot slave process fails

	see 		Bit 4: Configuration Error bit
	see also object 5003h
			additional: object 5009h, 500Ah

note:
	failed boot slave process is repeated when
 		Bit 2 of the slave`s NMT Slave configuration
	is set
 	and the NMT status of the CM module is not stopped

· the slave is present but it is not booted automatically

the CM module does not automatically starts a boot slave process of a slave device
· after an error control event of the slave
· after a hot swap of the slave
· belated connection of the slave
if Bit 2 of the slave`s NMT Slave configuration is not set.

its boot slave process must be requested by
 	1F25h, subindex slave`s node id
	see chapter 7.2 of the user manual

· unexpected device is not present

		
· NMT State Stopped / Operational / Pre-operational
condition:
· slave device has been booted successfully
· slave device is controlled by the CM module
either by consuming its heartbeat or by guarding

hint: unexpected device
· the NMT status of a present unexpected device is also displayed

note:
· only a slave that has been booted successfully can be set to operational

· CANopen Device missing
possible reasons:
· slave device is missing / not connected

hint:
missing can be also caused by a reset node command that is written to the slave due to
	- heartbeat timeout / guarding timeout
	- heartbeat / guarding response has reported another
 	 CANopen NMT state than the expected one
	- the configuration of the slave has failed
and the slave has not finished its CANopen initialization before the CM module has started to boot the slave
the slave device should be detected as present after some retries of the boot slave process

· CM module is disconnected from the CANopen network
	see also object 5000h, subindex 1: ALONE (bit 13)

Configuration Error bit (bit 4):
· possible reasons:
· identity error
	see also the diagnostic object 500Ah
· concise DCF error
the configuration of the slave has failed
	see also the diagnostic object 5009h
· hint:
the boot slave process of a slave can also fail although neither an identity error nor a concise DCF error has been detected.
· e.g.:
slave device has to restore its default configuration
but it does not support the object 1011h
and the slave reports another error as
 	 “Object does not exist in the object dictionary”
	or “Sub-index does not exist”
· such errors are not indicated by bit 4
· but the slave device is marked in the diagnostic object 5003h
· such errors can be only solved by the analysis of the CAN trace

Node mandatory bit (bit 5):
· not supported by the CM CANopen

Unexpected device (bit 7):
· set bit: device is present but it is not configured as a slave in the CM CANopen Configuration Studio

[bookmark: _Toc32411319]Overview: Get Node & Network Status demo

Program group "Get Node & Network Status":
· provides all functions and function blocks
 	to process a Get Node & Network Status command

The processing of an Get Node & Network Status is handled by:

· the data type: “GetNNStatusRecord”

· it defines the data type of the destination area for the read data
	see chapter 8.1.4 Get Node & Network Status
		description of “Parameter Record”

· definition of GetNNStatusRecord:
 	Array[0..“cHighOffset_GetNNStatusRecord“] of Byte

	see: PLC data types / CANopen

· it is mandatory for the “Get Node & Network Status” demo

	see Api_AnalyseNodeNetworkStatus FC
	 "Ctrl_CM_CANopen".GetNNStatus.Data
	 GetNodeNetworkStatusMain FC

· the user constant: “cHighOffset_GetNNStatusRecord“

· it defines
· the last element / highest “Offset” of “GetNNStatusRecord”
· the maximum number of data bytes that can be read
· maximum number
	= “cHighOffset_GetNNStatusRecord“ + 1
· see input MLEN of RDREC
	called by GetNodeNetworkStatusMain FC

· the structure "Ctrl_CM_CANopen".GetNNStatus

· it provides all parameters / variables and the data area to run one “Get Node & Network Status” command
· this structure is used by
	GetNodeNetworkStatusMain FC

· GetNodeNetworkStatusMain [FC18]

· main routine of the processing of one “Get Node & Network Status” command

· it checks if “Get Node & Network Status” command shall be processed	

· it processes the requested command

· it informs the application about the result of the processed command
 by calling the application function:
	 Api_AnalyseNodeNetworkStatus FC FC

· Api_AnalyseNodeNetworkStatus FC

· it informs the application about
	the result
	the status data
of a processed “Get Node & Network Status” command

· Cyclic interrupt [OB30]
· OB30 cyclically requests
	the processing of a “Get Node & Network Status” command

· "Ctrl_CM_CANopen".fOperational_CMCANopen

· this flag informs the application if the CM CANopen is operational
· it is automatically updated by Api_AnalyseNodeNetworkStatus FC
	see line 605 – 611

[bookmark: _Toc32411320]Adaption of the demo

[bookmark: _Toc32411321]GetNodeNetworkStatusMain [FC18]

The main function of the processing of one “Get Node & Network Status” command
· must not be adapted by the customer
· note:
	it can process one “Get Node & Network Status” command at a time

Description of GetNodeNetworkStatusMain [FC18]:
· it checks if a “Get Node & Network Status” command shall be processed
· hint:
	function returns immediately
		if the inout parameter #REQ is false
	
	the processing of a started but not yet finished command
		is only suspended
· see: line 34 - 38
	
· it processes the requested command
· see: line 47 - 56
· condition:
	inout parameter #REQ = TRUE
	
· when the command has been processed
· condition:
	inout parameter #REQ = TRUE
· it calls Api_AnalyseNodeNetworkStatus [FC14]
· see: line 59 - 62, 68 - 73
· and clears the command request afterwards
	inout parameter #REQ = FALSE
· see: line 80

Note: flag that “controls” the inout parameter REQ
· set flag
· requests the processing of a “Get Node & Network Status” command
· and indicates “busy”: requested command is running

Parameters of GetNodeNetworkStatus [FC18]:
· Input:
· HW_ID	hardware identifier of the accessed CM CANopen in
 		TIA Portal
			data type: HW_IO
· InOut:
· REQ		TRUE: run “Get Node & Network Status”

		hint:
			set flag shall not be reset by the application

			REQ is automatically set to FALSE by the
	 	function when the command has been
			processed

[bookmark: _Toc32411322]the user constant “cHighOffset_GetNNStatusRecord“

The user constant “cHighOffset_GetNNStatusRecord“
· defines
· the last element / highest “Offset” of “GetNNStatusRecord”
· the maximum number of data bytes that can be read
	maximum number = “cHighOffset_GetNNStatusRecord“ + 1
· value range:
· 4 <= “cHighOffset_GetNNStatusRecord“ <= 131
· default value of the demo: 131
· CANopen Manager mode:
· “cHighOffset_GetNNStatusRecord“
	>= 4 + highest CANopen node id of an expected slave <= 131
· recommended:
	“cHighOffset_GetNNStatusRecord“ = 131
it covers the complete CANopen node id range
· CANopen slave mode:
· “cHighOffset_GetNNStatusRecord“ >= 4
· note: “Offset” > 4
	does not transfer any data in CANopen slave mode

[bookmark: _Toc32411323]Api_AnalyseNodeNetworkStatus FC

Api_AnalyseNodeNetworkStatus FC
· informs the application about
	the result and the status data
of a processed “Get Node & Network Status” command

see below: input parameters

· please read the comments of Api_AnalyseNodeNetworkStatus FC:

· they provide an overview of the procedure
· see: line 31 - 56

· they provide a more detailed description of “Contents of Parameter RECORD”
they list the possible causes of errors
and refer to additional diagnostic entries of the module

· valid data range:					line 91 - 100
Offset 1 Error flags (module): 		line 145 - 215
Offset 2 Error flags (network): 		line 217 - 352
Offset 3 CANopen Module mode: 	line 124 - 143
Offset 4 CANopen Node Status: 		line 354 - 374
Offset 5 Network status: 			line 376 - 477
							line 613 - 643

· must be implemented by the customer
· error reported by the used RDREC
	line 58 - 75
· data valid
	line 77 - 88
· Message error: Offset 0
	line 503 - 516
· CANopen Module mode: Offset 3
	line 518 - 528
· Error flags (module): Offset 1
	line 530 -– 565
· Error flags (network): Offset 2
	line 567 - 600
· CANopen Node status: Offset 3
	line 602 – 611
· Network status: Offset 5
	line 645 – 697
Input Parameters:

	Name
	Data type
	Description

	HW_ID
	HW_IO
	hardware identifier
	of the accessed CM CANopen module

	fError
	Bool
	value of output ERROR of RDREC
 used for Get Node & Network Status

	dwStatus
	DWord
	value of output STATUS of RDREC
 used for Get Node & Network Status

	fValid
	Bool
	value of output VALID of RDREC
 used for Get Node & Network Status

	uiLen
	UInt
	value of output LEN of RDREC
 used for Get Node & Network Status

	Data
	"GetNNStatusRecord"
	data area where to get the status information

[bookmark: _Toc32411324]Structure: "Ctrl_CM_CANopen".GetNNStatus

This structure holds all information to run a “Get Node & Network Status” command:
· this structure is exclusively used by GetNodeNetworkStatusMain FC

Description of the structure GetNNStatus:

	Name
	Data type
	Description

	fReq
	Bool
	TRUE:	run “Get Node & Network
 		Status” command
FALSE: 	do not run “Get Node &
 		Network Status” command

	fBusy
	Bool
	value of output BUSY of RDREC
 used for Get Node & Network Status

	fError
	Bool
	value of output ERROR of RDREC
 used for Get Node & Network Status

	fValid
	Bool
	value of output VALID of RDREC
 used for Get Node & Network Status

	dwStatus
	DWord
	value of output STATUS of RDREC
 used for Get Node & Network Status

	uiLen
	UInt
	value of output LEN of RDREC
 used for Get Node & Network Status

	Data
	"GetNNStatusRecord"
	data area where the status information is saved

GetNodeNetworkStatusMain
· uses Temp variables instead of fBusy, fError, fValid, dwStatus, uiLen

Note: "Ctrl_CM_CANopen".GetNNStatus.fReq
· “controls” the inout parameter REQ of GetNodeNetworkStatusMain FC
· is cyclically set by OB30

[bookmark: _Ref13045364][bookmark: _Ref13045402][bookmark: _Toc32411325]Revised library
The library has been revised to provide more performance and flexibility.

The input / output parameters of the function blocks differ from the description in the user manual of the CM CANopen.

The revised library “CM CANopen Function Blocks V13 Ver. 2.0.0“
· has been created with TIA V13
· can be imported in TIA V14 / 15 / 15.1

The library provides the libraries for
· CANopen mode
· Types / CANopen
· Master copies / CANopen
· Transparent CAN mode
· Types / Transparent CAN
· Master copies / Transparent CAN

[bookmark: _Toc32411326]CANopen mode

Hint:
· transparent CAN interface functions are not supported by CANopen mode

The CANopen mode requires the following elements of the library to be copied to the project:
· Types / CANopen:
· all data types must be copied to “PLC data types”
· Master copies / CANopen
· all FBs must be copied to “Program blocks”
· hint:
· the library does not provide data types / function blocks for the interface functions:
· Get Process Data In
· Set Process Data Out
· Get Node & Network Status
· these functions must be implemented by the customer
· the CANopen demo provides an exemplary implementation of these interface functions

[bookmark: _Ref13045718][bookmark: _Toc32411327]Data type: “SDO_ReadData”

This data type
· is only relevant for SDO read commands
· it defines the data type of the data area
	to which the read data will be copied by ReadSDO FB

Definition of “SDO_ReadData”
· “SDO_ReadData” is a byte array:
	Array[1..x] of Byte
· x defines the maximum number of data bytes
	that can be read by one SDO read command
· value range:
· 1 <= x < 216 = 65536
· default value: 245
· x can be changed by the customer:
· x >= maximum data byte size of an object
 	 that is read by the application

[bookmark: _Ref13045760][bookmark: _Toc32411328]Data type: “SDO_WriteData”

This data type
· is only relevant for SDO write commands
· it defines the data type of the data area
	that data is to be written by WriteSDO FB

Definition of “SDO_WriteData”
· “SDO_WriteData” is a byte array:
	Array[1..x] of Byte
· x defines the maximum number of data bytes
	that can be written by one SDO write command
· value range:
· 1 <= x < 216 = 65536
· default value: 245
· x can be changed by the customer:
· x >= maximum data byte size of an object
 	 that is written by the application

[bookmark: _Toc32411329]Description of ReadSDO [FB104]

ReadSDO FB performs an SDO read on the node, index and subindex that is defined in the parameters.
Read data is saved in the area that output DATA points to.
The block will continue to read the SDO even when the data area is filled until all data is read:
· only the amount of data defined by the input MAX_SIZE is saved
· SIZE holds the actual read amount of data
· if the size given in the parameter MAX_SIZE is too small
· RET will return error 1022h (too much SDO data)

ReadSDO FB has been revised to provide more performance and flexibility.

Input Parameters:

	Name
	Data type
	Description

	REQ
	Bool
	start request:
=> REQ is only relevant
 when ReadSDO FB
 is idle / not occupied by the processing
 of an SDO command
=> idle state and REQ = TRUE
 	starts the requested SDO read command

	ID
	HW_IO
	hardware identifier of the accessed CM CANopen device in TIA Portal

	SLOT
	Byte
	defines which SDO channel of the CM CANopen shall be used

this parameter has to be unique
 for each of the SDO requests
 running simultaneously
 on one CM CANopen

valid values: 0 – 7

note:
 SLOT defines an SDO channel
 of the CM CANopen
 it must not be confused
 with a physical slot of TIA Portal

	NODE
	Int
	CANopen node id of the CANopen module where SDO read is to be performed

valid values: 0 - 127

node id 0:
 node id 0 always addresses
	the CM CANopen module
 regardless of its actual node id

	INDEX
	Word
	index of the object to be read

	SUB
	Byte
	subindex of the object to be read

	MAX_SIZE
	DInt
	limit of data bytes that can be read and saved
 	<= byte size of the destination area
		where the read data are saved

Output Parameters:

	Name
	Data type
	Description

	BUSY
	Bool
	TRUE: ReadSDO FB is running
	 	an SDO read command

	 BUSY turns TRUE and stays TRUE 		until the request is finished
 	 then it returns to FALSE

	RET
	UInt
	error code
	see CM CANopen - User Manual.pdf
		chapter 8.1.3 SDO Read/Write
 		=> output RET

available when BUSY turns FALSE

	SIZE
	UInt
	number of bytes that have been read

	DATA
	"SDO_ReadData"
	data area where to save the read data

Hint:
· the output RET is only valid
	when output BUSY has switched to FALSE
· the outputs SIZE and Data are only valid
	when output BUSY has switched to FALSE
	and output RET does not report an error

Output DATA:
· the data area must have the data type “SDO_ReadData”
· this structure is mandatory for SDO read commands
· see chapter Data type: “SDO_ReadData”

Read data:
· number of read data bytes output SIZE
· data format:
· CANopen format little endian
	least significant byte is received first LSB
	most significant byte is received last MSB
· order of reception:
· 1st received data byte 1st transmitted LSB
	*.SDO_ReadData[1]
…
nth received data byte nth transmitted
 	*.SDO_ReadData[n]
…
last received data byte last transmitted MSB
 	*.SDO_ReadData[#uiDataByteSize]

· * stands for the name of the data area output DATA points to

[bookmark: _Toc32411330]Description of WriteSDO [FB105]

WriteSDO FB performs an SDO write on the node, index and subindex that is defined in the parameters.
Data written is fetched from the area pointed to by input DATA.

The WriteSDO FB has been revised to provide more performance.

Input Parameters:

	Name
	Data type
	Description

	REQ
	Bool
	start request:
=> REQ is only relevant
 when WriteSDO FB
 	is idle / not occupied by the
 	processing of an SDO command
=> idle state and REQ = TRUE
 	starts the requested SDO write
 	command

	ID
	HW_IO
	hardware identifier of the accessed CM CANopen device in TIA Portal

	SLOT
	Byte
	defines which SDO channel of the CM CANopen shall be used

this parameter has to be unique
 for each of the SDO requests
 running simultaneously
 on one CM CANopen

valid values: 0 – 7

note:
 SLOT defines an SDO channel
 of the CM CANopen
 it must not be confused
 with a physical slot of TIA Portal

	NODE
	Int
	CANopen node id of the CANopen module where SDO write is to be performed

valid values: 0 - 127

node id 0:
 node id 0 always addresses
	the CM CANopen module
 regardless of its actual node id

	INDEX
	Word
	index of the object to be written

	SUB
	Byte
	subindex of the object to be written

	DATA
	"SDO_WriteData"
	data area where to get the data to be written

	DATASIZE
	UInt
	number of bytes to be written

Output Parameters:

	Name
	Data type
	Description

	BUSY
	Bool
	TRUE: WriteSDO FB is running
	 	an SDO write command

	 BUSY turns TRUE and stays TRUE 		until the request is finished
 	 then it returns to FALSE

	RET
	UInt
	error code
	see CM CANopen - User Manual.pdf
		chapter 8.1.3 SDO Read/Write
 		=> output RET

available when BUSY turns FALSE

Hint:
· the output RET is only valid
	when output BUSY has switched to FALSE

Input DATA:
· the data area must have the data type "SDO_WriteData"
· this structure is mandatory for SDO write commands
· see chapter Data type: “SDO_WriteData”

Data:
· number of data bytes to be written input DATASIZE
· data format:
· CANopen format little endian
	least significant byte is received first LSB
	most significant byte is received last MSB
· order of transmission:
· 1st transmitted data byte 1st received LSB
	*. SDO_WriteData[1]
…
nth transmitted data byte nth received
 	*. SDO_WriteData[n]
…
last transmitted data byte last received MSB
 	*. SDO_WriteData [#uiDataByteSize]

· * stands for the name of the data area input DATA points to

[bookmark: _Toc32411331]Transparent CAN mode

Hint:
· CANopen interface functions are not supported by transparent CAN mode

The transparent CAN mode requires the following elements of the library to be copied to the project:
· Types / Transparent CAN:
· all data types must be copied to “PLC data types”
· Master copies / Transparent CAN
· all FBs / FCs must be copied to “Program blocks”
· SendReceiveErrorCode FC
	is needed by
		CAN_CTRL FB, CAN_RCV FB,
		CAN_SEND FB
· hint:
· the library does not provide data types / function blocks for the interface function:
· Get Diagnostic Information
· this function must be implemented by the customer
· the transparent CAN demo provides an exemplary implementation of Get Diagnostic Information

Hint: Power on
· reception of CAN frames
· the acceptance filter list is empty after power on
	CAN frames are not received
· the receive FIFO for CAN frames is empty
· the transmit FIFO for CAN frames is empty
· BUFFER LIMIT REACHED is set to its default value
· default value: 256

Hint: Reset FCN 5 of CAN_CTRL
· reception of CAN frames
· the acceptance filter list is cleared
	CAN frames are not received
· the receive FIFO for CAN frames is cleared
· the transmit FIFO for CAN frames is cleared
· the CAN controller is reset and restarted
· BUFFER LIMIT REACHED is not changed

[bookmark: _Toc32411332]Data type: “FCN_1_CANIDList”

This data type
· is only relevant for the CAN_CTRL command: FCN = 1
	see input CANIdList of CAN_CTRL FB
· shall not be changed by the customer!

Definition of “FCN_1_CANIDList”
· “FCN_1_CANIDList” is a word array:
	Array[0..117] of Word
· maximum 118 CAN identifiers can be configured by one FCN = 1 command in the acceptance filter
· order of processing:
· 1st processed FCN_1_CANIDList[0]
…
last processed FCN_1_CANIDList[LEN_BufferLimit]
· LEN_BufferLimit:
	see input LEN_BufferLimit of CAN_CTRL FB
· description of an entry:
	see chapter 8.2.3 CAN_CTRL
			description of FCN = 1
· examples:
· all CAN identifiers shall be received except CAN identifier 16#123
1. receive all CAN identifiers
	FCN_1_CANIDList[0] = 16#FFFF
2. remove CAN identifier 16#123 from acceptance filter
	FCN_1_CANIDList[1] = 16#0123
3. number of CAN identifiers that shall be processed
	LEN_BufferLimit = 2

· CAN identifier16#000 and 16#123 shall be received
1. receive CAN identifier 16#000
	FCN_1_CANIDList[0] = 16#8000
2. receive CAN identifier 16#123
	FCN_1_CANIDList[1] = 16#8123
3. number of CAN identifiers that shall be processed
	LEN_BufferLimit = 3

· disable all CAN identifiers
	LEN_BufferLimit = 0
note:
	CAN identifier list is ignored

[bookmark: _Toc32411333]Data type: “CANFrames”

This data type
· is only relevant for the exchange of CAN frames by CAN_RCV FB and CAN_SEND FB
· shall not be changed by the customer!

Definition of “CANFrames”
· “CANFrames” is a byte array:
	Array[0..227] of Byte
· maximum 19 CAN frames can be exchanged by one CAN_RCV FB respectively one CAN_SEND command
· each CAN frames covers 12 bytes

Description of the layout of “CANFrames”
· each CAN frame covers 12 bytes in the byte array

· reception / transmission order of the CAN frames

	CAN frame
	byte range
	comment

	
	
	CAN_RCV
	CAN_SEND

	1st CAN frame
	 0 - 11
	oldest in the receive FIFO
	1st entered in the transmit FIFO

	2nd CAN frame
	 12 - 23
	2nd oldest in the receive FIFO
	2nd entered in the transmit FIFO

	…
	…
	…
	…

	19th CAN frame
	 216 - 227
	19th oldest in the receive FIFO
	19th entered in the transmit FIFO

rule: nth CAN frame	
· nth CAN frame covers the bytes:
	(n – 1) * 12 … ((n – 1) * 12 + 11)

· description of the layout of a CAN frame

	descriptor
	byte order
	comment

	CAN identifier
	1
	most significant byte
 	of the CAN identifier

	
	2
	least significant byte
	of the CAN identifier

	RTR info
	3
	= 0: 	no RTR request
	=> CAN frame transfers 	data bytes

<> 0: 	RTR request
	=> CAN frame does not 	
 	 transfer data bytes
	=> requests the transmission
 	 of the CAN frame
 	 =>	that uses
			the CAN identifier
 		of the received CAN frame

	number
data bytes
	4
	no RTR request
	number of data bytes
	transferred by the CAN frame

RTR request:
 	number of data bytes			 that should be transferred
 	by the requested CAN frame

	data
	
	data field of the CAN frame:
a) RTR request:
 	invalid

b) no RTR request:
 	valid data bytes:
	 1 … number data bytes

	
	5
	1st data byte in the data field

	
	6
	2nd data byte in the data field

	
	7
	3rd data byte in the data field

	
	8
	4th data byte in the data field

	
	9
	5th data byte in the data field

	
	10
	6th data byte in the data field

	
	11
	7th data byte in the data field

	
	12
	8th data byte in the data field

· layout of “CANFrames”

	descriptor
	byte offset

	
	1st CAN frame
	2nd CAN frame
	nth CAN frame

	CAN identifier:
	MSB
	0
	12
	(n – 1) * 12

	CAN identifier:
	LSB
	1
	13
	(n – 1) * 12 + 1

	RTR info
	2
	14
	(n – 1) * 12 + 2

	number data bytes
	3
	15
	(n – 1) * 12 + 3

	1st data byte
	4
	16
	(n – 1) * 12 + 4

	2nd data byte
	5
	17
	(n – 1) * 12 + 5

	3rd data byte
	6
	18
	(n – 1) * 12 + 6

	4th data byte
	7
	19
	(n – 1) * 12 + 7

	5th data byte
	8
	20
	(n – 1) * 12 + 8

	6th data byte
	9
	21
	(n – 1) * 12 + 9

	7th data byte
	10
	22
	(n – 1) * 12 + 10

	8th data byte
	11
	23
	(n – 1) * 12 + 11

Notation:
· MSB most significant byte
· LSB least significant byte
· example:
CAN identifier: MSB = 16#01
CAN identifier: LSB = 16#23
=> CAN identifier = 16#0123

[bookmark: _Toc32411334]Description of CAN_CTRL [FB1]

This block is used to control the state of the transparent CAN layer and to set its parameters:
	see chapter 8.2.3 CAN_CTRL of the manual of the CM CANopen

The interface has been revised to provide more performance and flexibility.

Input Parameters:

	Name
	Data type
	Description

	HW_ID
	HW_IO
	hardware identifier of the accessed CM CANopen device in TIA Portal

	FCN
	Int
	Function code:
 1: Set acceptance filter in the module
 2: BUFFER LIMIT REACHED
 set number of frames to store before
 warning
 3: Clear RX buffer
· no additional data
 4: (reserved)
 5: Reset CAN controller
· no additional data

	LEN_BufferLimit
	UInt
	Only relevant for the function codes
· FCN = 1:
number of CAN Ids to be transferred
to the CM module
 	0 <= value <= 118
· FCN = 2:
value of BUFFER LIMIT REACHED
 	0 < value <= 256

otherwise it is ignored

	CANIdList
	"FCN_1_CANIDList"
	Only relevant for the function code
· FCN = 1:
pointer to the CAN identifier list

it is ignored for
	LEN_BufferLimit = 0

otherwise it is ignored

InOut Parameters:

	Name
	Data type
	Description

	REQ
	Bool
	TRUE:
· run the requested command
· hint 	
	it must not be reset while
 	the command is running

	flag is automatically cleared by 	CAN_CTRL when the command
	has been processed

FALSE:
· do not process a CAN_CTRL command
· hint
	it resets the state machine of
 	CAN_CTRL FB

	it does not affect the state 	machine of the CM CANopen
· all input parameters are ignored
· all output parameters are invalid
except BUSY that is FALSE

Output Parameters:

	Name
	Data type
	Description

	BUSY
	Bool
	If the function block needs more than one cycle to complete a command, this output is set to TRUE.
It stays TRUE until the function block is done, then it is set to FALSE.

BUSY = TRUE indicates that a command is running

	RET
	UInt
	Error code
see “Error Codes (RET)” of CAN_CTRL described in the manual of the CM module.

RET = 0 no error

additional error codes:
· 16#109C
- FCN = 1
 => 	LEN_BufferLimit > 118
· 16#109E
- FCN = 1
 => 	minimum one CAN-ID is out of
 	range
- FCN = 2
 => 	LEN_BufferLimit: out of range
		either 0 or > 256
· 16#109F
invalid state of the state machine of
CAN_CTRL

Valid once
	when BUSY turns FALSE until the next call of the function block.

	CAN_STATUS
	Word
	CAN status:
bit coded:
- bit 0: set: Bus off
- bit 1: set: error passive
- bit 2: set: receive queue: full
- bit 3: set: receive queue: half full
 receive FIFO holds minimum 128
 	 unread CAN frames
- bit 4: set: receive queue: warning limit
 reached
 receive FIFO holds minimum
 BUFFER LIMIT REACHED
 	 unread CAN frames
- bit 5: set: receive message lost
- bit 6: set: transmit queue: half full
 transmit FIFO holds minimum
 127 CAN frames that have not
 been transmitted yet 	
- bit 7: set: transmit queue: warning limit
 reached
 maximum 19 free CAN frame
 entries are left in the transmit
 FIFO 	
- bit 8 - 14: not used
- bit 15: set: valid

hint:
	CAN_STATUS is only valid
		if bit 15 is set

Hint:
· the outputs RET and CAN_STATUS are only valid
	when output BUSY has switched to FALSE

Note: CAN_STATUS
· an alarm will be generated if any bit except bit 15 (valid bit) is set
· the alarm is cleared when all bits 0 – 14 are reset

[bookmark: _Toc467585513][bookmark: _Toc457542602][bookmark: _Toc13049312][bookmark: _Toc32411335]Description of CAN_RCV FB

The received CAN frames that have passed the acceptance filter are entered in a receive FIFO on the CM module according their order of reception.
The receive FIFO can hold up to 256 CAN frames.
CAN_RCV uploads the CAN frames from the receive FIFO according their order of reception (first in first out) and copies the uploaded CAN frames to the application specific destination.

Number of uploaded CAN frames by CAN_RCV:
· maximum 19 CAN frames can be read per command
· uploaded number of CAN frames:
	minimum of [number of CAN frames still in the receive FIFO, 19]

Input parameters:

	Name
	Data Type
	Description

	REQ
	Bool
	TRUE:
· run CAN_RCV command
· hint 	
	it must not be reset while
 	the command is running
· recommended:
	always TRUE

FALSE:
· do not process a CAN_RCV command
· hint
	it resets the state machine of
 	CAN_RCV FB

	it does not affect the state 	machine of the CM CANopen
· all input parameters are ignored
· all output parameters are invalid
except BUSY that is FALSE

	HW_ID
	HW_IO
	hardware identifier of the accessed CM CANopen device in TIA Portal

InOut parameters:

	Name
	Data Type
	Description

	CAN_FRAMES
	"CANFrames"
	Destination area for the uploaded CAN frames

Valid once
	when BUSY turns FALSE
	and RET reports “no error”
	and NO_FRAMES <> 0
until the next call of the function block.

Output parameters:

	Name
	Data Type
	Description

	BUSY
	Bool
	If the function block needs more than one cycle to complete an upload command, this output is set to TRUE.
It stays TRUE until the function block is done, then it is set to FALSE.

BUSY = TRUE indicates that a CAN_RCV command is running

	RET
	UInt
	Error code
see “Error Codes (RET)” of CAN_RCV described in the manual of the CM module

RET = 0 no error

Valid once
	when BUSY turns FALSE
until the next call of the function block.

	CAN_STATUS
	Word
	CAN status:
bit coded:
- bit 0 set: Bus off
- bit 1 set: error passive
- bit 2 set: receive queue: full
- bit 3 set: receive queue: half full
 receive FIFO holds minimum 128
 	 unread CAN frames
- bit 4 set: receive queue: warning limit
 reached
 receive FIFO holds minimum
 BUFFER LIMIT REACHED
 	 unread CAN frames
- bit 5 set: receive message lost
- bit 6 set: transmit queue: half full
 transmit FIFO holds minimum
 127 CAN frames that have not
 been transmitted yet 	
- bit 7 set: transmit queue: warning limit
 reached
 maximum 19 free CAN frame
 entries are left in the transmit
 FIFO 	
- bit 8 - 14: not used
- bit 15 set: valid

hint:
	CAN_STATUS is only valid
		if bit 15 is set

	NO_FRAMES
	SInt
	Number of uploaded CAN frames

maximum 19 CAN frames are uploaded
per processed CAN_RCV command

Valid once
	when BUSY turns FALSE
	until the next call of the function block
and RET has not reported an error

[bookmark: _Toc467585519][bookmark: _Toc457542608][bookmark: _Toc13049314][bookmark: _Toc32411336]CAN_SEND FB
Description
CAN_SEND downloads CAN messages to the CM module to be sent to the CAN network.
Maximum 19 CAN frames can be downloaded per processed CAN_SEND.
The downloaded CAN frames are entered in a transmit FIFO of the CM module according their download order.
The transmit FIFO can hold up to 254 CAN frames.
The CAN frames are transmitted from this transmit FIFO: first in – first out.

Hint
· It is not possible that several CAN_SEND commands are concurrently processed to the same CM module
· Parallel processed CAN_SEND commands to different CM modules must be processed by different instances of CAN_SEND FB

[bookmark: _Toc467585520][bookmark: _Toc457542609][bookmark: _Toc13049315]

[bookmark: _Toc32411337]Parameters of CAN_SEND FB

Input parameters:

	Name
	Data Type
	Description

	HW_ID
	HW_IO
	[bookmark: OLE_LINK3][bookmark: OLE_LINK4]hardware identifier of the accessed CM module

see TIA Portal:
 Device configuration
 => CM module
 => General
 => CANopen interface
 => Hardware identifier

	NO_FRAMES
	USInt
	number of CAN frames to be transferred

valid range:
		0 <= value <= 19

	CAN_FRAMES
	"CANFrames"
	source area where to get the CAN frames to be transferred

Note: "CANFrames"
· this data type is provided by the “CM CANopen Function Blocks V13 Ver. 2.0.0” library
· "CANFrames" shall not be changed by the customer!
· The layout of "CANFrames" is described by chapter: 5.1

InOut parameters:

	Name
	Data Type
	Description

	REQ
	Bool
	TRUE:
· run a download of CAN frames
· hint
· flag is automatically cleared by
CAN_SEND when the command has been processed
· it must not be reset while the
command is running

FALSE:
· initialize CAN_SEND FB but do not run a download of CAN frames
· the CM module is not accessed
· output CAN_STATUS is not
updated
· all input parameters are ignored

Output parameters:

	Name
	Data Type
	Description

	BUSY
	Bool
	If the function block needs more than one cycle to complete the download command, this output is set to TRUE.
It stays TRUE until the function block is done, then it is set to FALSE.

BUSY = TRUE indicates that a CAN_SEND command is running

	
RET
	UInt
	Error code
see “Error Codes (RET)” of CAN_SEND described in the manual of the CM module

RET = 0 no error

additional error codes:
· 16#109C
 => 	NO_FRAMES > 19
· 16#109D
 => 	the CAN-ID 	or the number of 	data bytes of a CAN frame is out
 	of range
· 16#109F
 => 	invalid state of the state
 	machine of CAN_SEND

Valid once the BUSY signal turns FALSE until the next call of the function block

	CAN_STATUS
	Word
	CAN status:
bit coded:
- bit 0 set: Bus off
- bit 1 set: error passive
- bit 2 set: receive queue: full
- bit 3 set: receive queue: half full
 receive FIFO holds minimum 128
 	 unread CAN frames
- bit 4 set: receive queue: warning limit
 reached
 receive FIFO holds minimum
 BUFFER LIMIT REACHED
 	 unread CAN frames
- bit 5 set: receive message lost
- bit 6 set: transmit queue: half full
 transmit FIFO holds minimum
 127 CAN frames that have not
 been transmitted yet 	
- bit 7 set: transmit queue: warning limit
 reached
 maximum 19 free CAN frame
 entries are left in the transmit
 FIFO 	
- bit 8 - 14: not used
- bit 15 set: valid

hint:
	CAN_STATUS is only valid
		if bit 15 is set

[bookmark: _Toc457542612]

[bookmark: _Toc13049316][bookmark: _Toc32411338]SendReceiveErrorCode FC
This function is called by CAN_CTRL FB, CAN_RCV FB and CAN_SEND FB due to an error.
It generates the error codes that are available at the output RET of CAN_CTRL FB, CAN_RCV FB and CAN_SEND FB.

[bookmark: _Toc32411339]CM CANopen Configuration Studio
This chapter clarifies some misunderstandings and emphasizes an overlooked feature of the Configuration Studio.

[bookmark: _Toc32411340]Exchange of process image data
This chapter clarifies some misunderstandings of the exchange of the process image between the CM CANopen and the CANopen network.

Exchanged process image data:
· only the application objects that are selected in “Application Objects” are exchanged between the CM CANopen and the CANopen network

Transmission type of a PDO:
· the transmission type of a PDO depends of the transmission type of its mapped objects
· the transmission type of an application object is individually selected in “Application Objects”

[image:]

· the generated PDO configuration is based on the selected application objects and their individual transmission type
· only application objects with the same transmission type are mapped in a PDO
Hint: 	change of the transmission type of a PDO in “PDO Mapping
 	Parameters”
· PDO is not locked
· the modified transmission type is ignored
· PDO is locked
· the transmission type of its mapped objects in “Application Objects” differs from the transmission type of the PDO
· the locked PDO is assumed to be used to transfer process data between slaves and not between the CM CANopen and the slave
· calculate configuration has to look for an alternative configuration for the process data exchange between the CM CANopen and the slave

Hint: Inhibit Time (100µs), Event Timer (ms), Transmission Rate
· Inhibit Time (100µs), Event Timer (ms), Transmission Rate are additional attributes of a PDO to control its transmission rate
· these parameters are configurable in “PDO Mapping Parameters”

Hint: change of the CAN-ID of a PDO in “PDO Mapping Parameters”
· PDO is not locked
· the modified CAN-ID is ignored
· PDO is locked
· work around for all version 2.1.xx of the Configuration Studio
· close the Configuration Studio
· start the Configuration Studio
· calculate configuration

otherwise the CAN-ID of the corresponding PDO of the CM CANopen is not updated
· CM CANopen and the slave will not exchange process data with this PDO

Hint: Process Image Size (OUT) (byte), Process Image Size (IN) (byte)
· CM CANopen configuration Studio will use the values entered here to check if the byte size of the selected application objects exceeds the entered range
· the actual maximum byte size of the process image input / output is set in the hardware configuration of the CM CANopen in TIA Portal
· Process Image Size (OUT) (byte) sets the limit for: Allocated process Image Size IN
· Process Image Size (IN) (byte) sets the limit for: Allocated process Image Size OUT
[bookmark: _Toc32411341]“Device Parameters”
 “Device Parameters” provides access to parameter objects of the CANopen device that is currently selected in the “Project Explorer”.
Parameters that may require specific initialization with an alternative parameter value instead of the default value after power on / reset of the slave can be configured here:
· the slave will be also configured with these modified values by the CM CANopen
· the PLC program must not configure these parameters

CM CANopen Configuration Studio generates an individual configuration for each slave device that has been entered in the “Project Explorer”:
· these slave configurations are also downloaded to and stored on the CM CANopen
· the CM CANopen will automatically configure each slave with its specific stored configuration
· during the CANopen network initialization
· after an error control event
· condition:
		Bit 2 of its NMT Slave configuration must be set
· after hot swap of the device / exchange of a faulty device
· condition:
		Bit 2 of its NMT Slave configuration must be set

The slave specific configuration contains
· the configuration that differs from the default configuration in its EDS
· the configuration of the PDOs
· the configuration of the communication parameters
· valid / not valid
· CAN-ID
· transmission type
· inhibit time (if supported)
· event timer (if supported)
· the configuration of the mapping
· number mapped objects
· mapped objects
· the configuration of the sync objects (if supported)
· sync producer / consumer
· sync cycle time
· the configuration of the heartbeat producer time (if supported)
· the configuration of the heartbeat consumer list (if supported)
· the configuration of the guard time / life time factor (if supported)
· the configuration of additional objects whose configuration has been changed in “Device Parameters”

example for a modified value in “Device Parameters”:

“Analogue input global interrupt enable” (object 6423h) is disabled by default but it should be enabled before the slave enters operational

[image:]

[bookmark: _Toc32411342]Status LEDs
This chapter describes the single LED patterns to avoid misinterpretation.

Hint: Double Flash
· double flash covers much more events than “a nodeguard event or a heartbeat event has occurred”
· CANopen slave mode:
· heartbeat timeout of a device whose heartbeat is monitored
· timeout of being guarded by the CANopen master
· CANopen Manager mode:
double flash indicates the error control events
· failure of the boot slave process of a slave
· slave is missing
· identity error of a slave
· the configuration of the slave has failed
· nodeguard event or a heartbeat event
· timeout
· heartbeat / guarding response reports another CANopen NMT state than the expected one
e.g.:
		CM module expects operational
 		but the slave reports pre-operational
· unexpected / unforced bootup message of a slave
· a device is present that has not been configured as slave
· the CM module is disconnected from the CANopen network

Note: priority of the indicated error events
· the highest prior error is indicated if there are several errors
· order of priority

	Priority
	Indication
	Error event

	highest
	1 Hz
	fatal error

	decreasing
priority
	On
	bus off

	
	Triple flash
	sync timeout

	
	Double flash
	error control event

	
	Single flash
	warning limit reached in CAN controller

	lowest
	Blinking
	general configuration error
CANopen initialization of the CM CANopen was not successful

[bookmark: _Toc32411343]Indicator states and flash rates
[image:]

	Copyright IXXAT Automation GmbH
	6
	<Product Name> Manual, Version

	Copyright HMS Technology Center Ravensburg GmbH
	16
	CM CANopen, CANopen Application, V1.0

image2.png

image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

image14.png

image15.png

image1.png

